Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Focusing field energy flow simulation of an azimuthally polarized Lorentz–Gaussian beam modulated by a concentric vortex phase mask

Not Accessible

Your library or personal account may give you access

Abstract

Based on the vector diffraction theory, this paper investigated the energy flow evolution of focusing an azimuthally polarized Lorentz–Gaussian beam modulated by concentric vortex phase mask. Three concentric zones make up the concentric vortex phase mask: the center zone, middle circular zone, and outer circular zone. Each zone has an adjusted phase. The findings demonstrate that flexible transverse energy flow rings can be obtained in the focal plane and that transverse energy flows with various polygonal forms can be produced by varying the middle circular radius or phase distribution. By adjusting the phase of the center zone and outer circular zone, the normalized transverse energy flow distribution can be rotated or changed. Findings demonstrate that this technique offers a potent means of controlling the distribution and orientation of Poynting vectors and electromagnetic fields. Moreover, a series of energy flow rings are generated to facilitate the transportation of absorptive particles to predetermined positions. These phenomena may provide a new approach for particle capture and optical particle manipulation.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Focusing characteristics of linearly polarized Lorentz–Gaussian vortex beams with sinusoidal phase modulation

Yueyang Chen, Jinsong Li, Haoran Zhang, Francisca Margarita Ocran, Shuo Chang, and Xiumin Gao
Appl. Opt. 60(21) 6128-6134 (2021)

Redistributing the energy flow of a tightly focused radially polarized optical field by designing phase masks

Zhongsheng Man, Zhidong Bai, Shuoshuo Zhang, Xiaoyu Li, Jinjian Li, Xiaolu Ge, Yuquan Zhang, and Shenggui Fu
Opt. Express 26(18) 23935-23944 (2018)

Focusing characteristics of chirped phase-modulated Lorentz–Gaussian vortex beams

Shuo Li, Jinsong Li, Guojin Feng, and Chenxu Lu
J. Opt. Soc. Am. A 40(10) 1867-1872 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.