Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Depth estimation from a single-shot fringe pattern based on DD-Inceptionv2-UNet

Not Accessible

Your library or personal account may give you access

Abstract

The quick and accurate retrieval of an object’s depth from a single-shot fringe pattern in fringe projection profilometry has been a topic of ongoing research. In recent years, with the development of deep learning, a deep learning technique to FPP for single-shot 3D measurement is being used. To improve the accuracy of depth estimation from a single-shot fringe pattern, we propose the depthwise separable Dilation Inceptionv2-UNet (DD-Inceptionv2-UNet) by adjusting the depth and width of the network model simultaneously. And we evaluate the model on both simulated and experimental datasets. The experimental results show that the error between the depth map predicted by the proposed method and the label is smaller, and the depth curve map is closer to the ground truth. And on the simulated dataset, the MAE of the proposed method decreased by 35.22%, compared to UNet. On the experimental dataset, the MAE of the proposed method decreased by 34.62%, compared to UNet. The proposed method is relatively outstanding in both quantitative and qualitative evaluations, effectively improving the accuracy of 3D measurement results from a single-shot fringe pattern.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Deep learning-based end-to-end 3D depth recovery from a single-frame fringe pattern with the MSUNet++ network

Chao Wang, Pei Zhou, and Jiangping Zhu
Opt. Express 31(20) 33287-33298 (2023)

Triple-output phase unwrapping network with a physical prior in fringe projection profilometry

Xinjun Zhu, Haomiao Zhao, Limei Song, Hongyi Wang, and Qinghua Guo
Appl. Opt. 62(30) 7910-7916 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (24)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (8)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.