Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Enhancement of plasmonic photovoltaics with pyramidal nanoparticles

Not Accessible

Your library or personal account may give you access

Abstract

Light trapping as a result of embedding plasmonic nanoparticles (NPs) into photovoltaics (PVs) has been recently used to achieve better optical performance compared to conventional PVs. This light trapping technique enhances the efficiency of PVs by confining incident light into hot-spot field regions around NPs, which have higher absorption, and thus more enhancement of the photocurrent. This research aims to study the impact of embedding metallic pyramidal-shaped NPs inside the PV’s active region to enhance the efficiency of plasmonic silicon PVs. The optical properties of pyramidal-shaped NPs in visible and near-infrared spectra have been investigated. The light absorption into silicon PV is significantly enhanced by embedding periodic arrays of pyramidal NPs in the cell compared to the case of bare silicon PV. Furthermore, the effects of varying the pyramidal-shaped NP dimensions on the absorption enhancement are studied. In addition, a sensitivity analysis has been performed, which helps in identifying the allowed fabrication tolerance for each geometrical dimension. The performance of the proposed pyramidal NP is compared with other frequently used shapes, such as cylinders, cones, and hemispheres. Poisson’s and Carrier’s continuity equations are formulated and solved for the current density–voltage characteristics associated with embedded pyramidal NPs with different dimensions. The optimized array of pyramidal NPs provides an enhancement of 41% in the generated current density when compared to the bare silicon cell.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Enhanced plasmonic photovoltaic using embedded novel gear-shaped nanoparticles

Marina Medhat, Yasser M. El-Batawy, Alaa K. Abdelmageed, and Ezzeldin A. Soliman
Appl. Opt. 57(19) 5425-5433 (2018)

Effects of “defective” plasmonic metal nanoparticle arrays on the opto-electronic performance of thin-film solar cells: computational study

Abrar J. Haque, Asif A. Suny, Rifat B. Sultan, Tawseef A. Khan, and Mustafa H. Chowdhury
Appl. Opt. 62(12) 3028-3041 (2023)

Effective light trapping enhancement by plasmonic Ag nanoparticles on silicon pyramid surface

Han Dai, Meicheng Li, Yingfeng Li, Hang Yu, Fan Bai, and Xiaofeng Ren
Opt. Express 20(S4) A502-A509 (2012)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.