T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]
D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, “Telecom-heralded entanglement between multimode solid-state quantum memories,” Nature 594, 37–40 (2021).
[Crossref]
K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]
A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]
C. Couteau, “Spontaneous parametric down-conversion,” Contemp. Phys. 59, 291–304 (2018).
[Crossref]
S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision for the road ahead,” Science 362, eaam9288 (2018).
[Crossref]
K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]
O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
[Crossref]
T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
[Crossref]
S. Lerch, B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, “Tuning curve of type-0 spontaneous parametric down-conversion,” J. Opt. Soc. Am. B30, 953–958 (2013).
[Crossref]
J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]
M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]
M. Hentschel, H. Hübel, A. Poppe, and A. Zeilinger, “Three-color Sagnac source of polarization-entangled photon pairs,” Opt. Express 17, 23153–23159 (2009).
[Crossref]
P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett. 92, 211103 (2008).
[Crossref]
S. Sauge, M. Swillo, M. Tengner, and A. Karlsson, “A single-crystal source of path-polarization entangled photons at non-degenerate wavelengths,” Opt. Express 16, 9701–9707 (2008).
[Crossref]
S.-Y. Baek and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A 77, 043807 (2008).
[Crossref]
C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref]
A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref]
T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]
D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A 72, 062301 (2005).
[Crossref]
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]
D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]
H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]
M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]
C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref]
O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
[Crossref]
K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]
S.-Y. Baek and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A 77, 043807 (2008).
[Crossref]
O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
[Crossref]
S. Lerch, B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, “Tuning curve of type-0 spontaneous parametric down-conversion,” J. Opt. Soc. Am. B30, 953–958 (2013).
[Crossref]
S. Lerch, B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, “Tuning curve of type-0 spontaneous parametric down-conversion,” J. Opt. Soc. Am. B30, 953–958 (2013).
[Crossref]
H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]
T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
[Crossref]
T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]
K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]
K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]
H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]
A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]
C. Couteau, “Spontaneous parametric down-conversion,” Contemp. Phys. 59, 291–304 (2018).
[Crossref]
J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]
D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, “Telecom-heralded entanglement between multimode solid-state quantum memories,” Nature 594, 37–40 (2021).
[Crossref]
A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]
J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]
M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]
C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref]
O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
[Crossref]
K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]
H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]
S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision for the road ahead,” Science 362, eaam9288 (2018).
[Crossref]
J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]
S. Lerch, B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, “Tuning curve of type-0 spontaneous parametric down-conversion,” J. Opt. Soc. Am. B30, 953–958 (2013).
[Crossref]
T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]
M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]
C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref]
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]
D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, “Telecom-heralded entanglement between multimode solid-state quantum memories,” Nature 594, 37–40 (2021).
[Crossref]
K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]
S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision for the road ahead,” Science 362, eaam9288 (2018).
[Crossref]
O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
[Crossref]
K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]
T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]
T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]
K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]
D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]
T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]
S.-Y. Baek and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A 77, 043807 (2008).
[Crossref]
T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]
K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]
O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
[Crossref]
O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
[Crossref]
D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]
D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, “Telecom-heralded entanglement between multimode solid-state quantum memories,” Nature 594, 37–40 (2021).
[Crossref]
A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]
A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]
S. Lerch, B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, “Tuning curve of type-0 spontaneous parametric down-conversion,” J. Opt. Soc. Am. B30, 953–958 (2013).
[Crossref]
D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A 72, 062301 (2005).
[Crossref]
A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]
T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]
O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
[Crossref]
D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]
K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]
K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]
K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]
A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]
K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]
M. Hentschel, H. Hübel, A. Poppe, and A. Zeilinger, “Three-color Sagnac source of polarization-entangled photon pairs,” Opt. Express 17, 23153–23159 (2009).
[Crossref]
A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref]
D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, “Telecom-heralded entanglement between multimode solid-state quantum memories,” Nature 594, 37–40 (2021).
[Crossref]
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]
J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]
K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]
C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref]
D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, “Telecom-heralded entanglement between multimode solid-state quantum memories,” Nature 594, 37–40 (2021).
[Crossref]
A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]
M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]
C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref]
T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
[Crossref]
S. Lerch, B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, “Tuning curve of type-0 spontaneous parametric down-conversion,” J. Opt. Soc. Am. B30, 953–958 (2013).
[Crossref]
T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
[Crossref]
K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]
T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]
T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
[Crossref]
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]
P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett. 92, 211103 (2008).
[Crossref]
S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision for the road ahead,” Science 362, eaam9288 (2018).
[Crossref]
P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett. 92, 211103 (2008).
[Crossref]
D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]
T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]
K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]
T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]
T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]
K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]
C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref]
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]
M. Hentschel, H. Hübel, A. Poppe, and A. Zeilinger, “Three-color Sagnac source of polarization-entangled photon pairs,” Opt. Express 17, 23153–23159 (2009).
[Crossref]
A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref]
K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]
H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]
O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
[Crossref]
K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]
P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett. 92, 211103 (2008).
[Crossref]
K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]
C. Couteau, “Spontaneous parametric down-conversion,” Contemp. Phys. 59, 291–304 (2018).
[Crossref]
S. Lerch, B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, “Tuning curve of type-0 spontaneous parametric down-conversion,” J. Opt. Soc. Am. B30, 953–958 (2013).
[Crossref]
D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, “Telecom-heralded entanglement between multimode solid-state quantum memories,” Nature 594, 37–40 (2021).
[Crossref]
A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref]
M. Hentschel, H. Hübel, A. Poppe, and A. Zeilinger, “Three-color Sagnac source of polarization-entangled photon pairs,” Opt. Express 17, 23153–23159 (2009).
[Crossref]
S. Sauge, M. Swillo, M. Tengner, and A. Karlsson, “A single-crystal source of path-polarization entangled photons at non-degenerate wavelengths,” Opt. Express 16, 9701–9707 (2008).
[Crossref]
D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A 72, 062301 (2005).
[Crossref]
D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]
T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
[Crossref]
M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]
S.-Y. Baek and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A 77, 043807 (2008).
[Crossref]
T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]
A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]
C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref]
H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]
J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]
T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]
S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision for the road ahead,” Science 362, eaam9288 (2018).
[Crossref]