Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Optics
  • Vol. 62,
  • Issue 9,
  • pp. 2273-2277
  • (2023)

Sagnac interferometer-type nondegenerate polarization entangled two-photon source with a Fresnel rhomb

Open Access Open Access

Abstract

Telecommunication wavelength-entangled photon sources (EPS) are indispensable systems for a fiber-based quantum network. We developed a Sagnac-type spontaneous parametric down conversion system adopting a Fresnel rhomb as a wideband and reasonable retarder. This novelty, to the best of our knowledge, enables the generation of a highly nondegenerate two-photon entanglement comprising the telecommunication wavelength (1550 nm) and quantum memory wavelength (606 nm for Pr:YSO) with only one nonlinear crystal. Quantum state tomography was performed to evaluate the degree of entanglement, and the fidelity with a Bell state |Φ+⟩ with a maximum of 94.4% was obtained. Therefore, this paper shows the potential of nondegenerate EPSs that are compatible with both telecommunication wavelength and quantum-memory wavelength to be installed in quantum repeater architecture.

© 2023 Optica Publishing Group

PDF Article

References

  • View by:

  1. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
    [Crossref]
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  3. S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision for the road ahead,” Science 362, eaam9288 (2018).
    [Crossref]
  4. D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, “Telecom-heralded entanglement between multimode solid-state quantum memories,” Nature 594, 37–40 (2021).
    [Crossref]
  5. A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
    [Crossref]
  6. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
    [Crossref]
  7. C. Couteau, “Spontaneous parametric down-conversion,” Contemp. Phys. 59, 291–304 (2018).
    [Crossref]
  8. S.-Y. Baek and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A 77, 043807 (2008).
    [Crossref]
  9. S. Lerch, B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, “Tuning curve of type-0 spontaneous parametric down-conversion,” J. Opt. Soc. Am. B30, 953–958 (2013).
    [Crossref]
  10. O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
    [Crossref]
  11. P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett. 92, 211103 (2008).
    [Crossref]
  12. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
    [Crossref]
  13. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
    [Crossref]
  14. M. Hentschel, H. Hübel, A. Poppe, and A. Zeilinger, “Three-color Sagnac source of polarization-entangled photon pairs,” Opt. Express 17, 23153–23159 (2009).
    [Crossref]
  15. T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
    [Crossref]
  16. S. Sauge, M. Swillo, M. Tengner, and A. Karlsson, “A single-crystal source of path-polarization entangled photons at non-degenerate wavelengths,” Opt. Express 16, 9701–9707 (2008).
    [Crossref]
  17. D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A 72, 062301 (2005).
    [Crossref]
  18. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
    [Crossref]
  19. K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
    [Crossref]
  20. M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
    [Crossref]
  21. K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
    [Crossref]
  22. J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
    [Crossref]
  23. T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
    [Crossref]

2022 (1)

T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]

2021 (1)

D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, “Telecom-heralded entanglement between multimode solid-state quantum memories,” Nature 594, 37–40 (2021).
[Crossref]

2020 (1)

K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]

2019 (1)

A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]

2018 (2)

C. Couteau, “Spontaneous parametric down-conversion,” Contemp. Phys. 59, 291–304 (2018).
[Crossref]

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision for the road ahead,” Science 362, eaam9288 (2018).
[Crossref]

2017 (1)

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

2016 (1)

O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
[Crossref]

2013 (3)

T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
[Crossref]

S. Lerch, B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, “Tuning curve of type-0 spontaneous parametric down-conversion,” J. Opt. Soc. Am. B30, 953–958 (2013).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

2009 (2)

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

M. Hentschel, H. Hübel, A. Poppe, and A. Zeilinger, “Three-color Sagnac source of polarization-entangled photon pairs,” Opt. Express 17, 23153–23159 (2009).
[Crossref]

2008 (3)

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett. 92, 211103 (2008).
[Crossref]

S. Sauge, M. Swillo, M. Tengner, and A. Karlsson, “A single-crystal source of path-polarization entangled photons at non-degenerate wavelengths,” Opt. Express 16, 9701–9707 (2008).
[Crossref]

S.-Y. Baek and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A 77, 043807 (2008).
[Crossref]

2007 (2)

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref]

2006 (1)

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

2005 (1)

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A 72, 062301 (2005).
[Crossref]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

2001 (1)

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

1998 (1)

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Afzelius, M.

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref]

Ahlrichs, A.

O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
[Crossref]

Bacco, D.

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

Baek, S.-Y.

S.-Y. Baek and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A 77, 043807 (2008).
[Crossref]

Benson, O.

O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
[Crossref]

Bernhard, C.

S. Lerch, B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, “Tuning curve of type-0 spontaneous parametric down-conversion,” J. Opt. Soc. Am. B30, 953–958 (2013).
[Crossref]

Bessire, B.

S. Lerch, B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, “Tuning curve of type-0 spontaneous parametric down-conversion,” J. Opt. Soc. Am. B30, 953–958 (2013).
[Crossref]

Briegel, H.-J.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Bussières, F.

T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
[Crossref]

China, F.

T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]

Christensen, E. N.

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

Christensen, J. B.

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

Cirac, J. I.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Corrielli, G.

A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]

Couteau, C.

C. Couteau, “Spontaneous parametric down-conversion,” Contemp. Phys. 59, 291–304 (2018).
[Crossref]

Cristiani, M.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

de Riedmatten, H.

D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, “Telecom-heralded entanglement between multimode solid-state quantum memories,” Nature 594, 37–40 (2021).
[Crossref]

A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref]

Dietz, O.

O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
[Crossref]

Ding, Y.

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

Dür, W.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Elkouss, D.

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision for the road ahead,” Science 362, eaam9288 (2018).
[Crossref]

Fedrizzi, A.

Fekete, J.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

Feurer, T.

S. Lerch, B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, “Tuning curve of type-0 spontaneous parametric down-conversion,” J. Opt. Soc. Am. B30, 953–958 (2013).
[Crossref]

Fiorentino, M.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

Gisin, N.

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Grandi, S.

D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, “Telecom-heralded entanglement between multimode solid-state quantum memories,” Nature 594, 37–40 (2021).
[Crossref]

Guo, K.

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

Hanson, R.

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision for the road ahead,” Science 362, eaam9288 (2018).
[Crossref]

Hentschel, M.

Herbst, T.

Herzog, U.

O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
[Crossref]

Horikiri, T.

K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]

Hübel, H.

Ikuta, R.

T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]

Imoto, N.

T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]

Ito, K.

K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Jennewein, T.

Karlsson, A.

Kim, T.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

Kim, Y.-H.

S.-Y. Baek and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A 77, 043807 (2008).
[Crossref]

Kobayashi, T.

T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]

Koefoed, J. G.

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

Kreißl, T.

O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
[Crossref]

Kroh, T.

O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
[Crossref]

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Lago-Rivera, D.

D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, “Telecom-heralded entanglement between multimode solid-state quantum memories,” Nature 594, 37–40 (2021).
[Crossref]

A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]

Lenhard, A.

A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]

Lerch, S.

S. Lerch, B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, “Tuning curve of type-0 spontaneous parametric down-conversion,” J. Opt. Soc. Am. B30, 953–958 (2013).
[Crossref]

Ljunggren, D.

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A 72, 062301 (2005).
[Crossref]

Mazzera, M.

A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]

Miki, S.

T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]

Müller, C.

O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
[Crossref]

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Nakamura, I.

K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]

Niizeki, K.

K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]

Okamura, K.

K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]

Osellame, R.

A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]

Ou, H.

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

Poppe, A.

Rakonjac, J. V.

D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, “Telecom-heralded entanglement between multimode solid-state quantum memories,” Nature 594, 37–40 (2021).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Rieländer, D.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

Rottwitt, K.

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

Sangouard, N.

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref]

Sauge, S.

Seri, A.

D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, “Telecom-heralded entanglement between multimode solid-state quantum memories,” Nature 594, 37–40 (2021).
[Crossref]

A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]

Simon, C.

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref]

Slater, J. A.

T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
[Crossref]

Stefanov, A.

S. Lerch, B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, “Tuning curve of type-0 spontaneous parametric down-conversion,” J. Opt. Soc. Am. B30, 953–958 (2013).
[Crossref]

Stuart, T. E.

T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
[Crossref]

Swillo, M.

Takei, N.

K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]

Tengner, M.

S. Sauge, M. Swillo, M. Tengner, and A. Karlsson, “A single-crystal source of path-polarization entangled photons at non-degenerate wavelengths,” Opt. Express 16, 9701–9707 (2008).
[Crossref]

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A 72, 062301 (2005).
[Crossref]

Terai, H.

T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]

Tittel, W.

T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Trojek, P.

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett. 92, 211103 (2008).
[Crossref]

Wehner, S.

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision for the road ahead,” Science 362, eaam9288 (2018).
[Crossref]

Weinfurter, H.

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett. 92, 211103 (2008).
[Crossref]

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Wong, F. N. C.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

Xie, X.-P.

K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]

Yamamoto, T.

T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]

Yamazaki, T.

T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]

Yoshida, D.

K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]

Zbinden, H.

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Zeilinger, A.

Zheng, M.-Y.

K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]

Zoller, P.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Appl. Phys. B (1)

O. Dietz, C. Müller, T. Kreißl, U. Herzog, T. Kroh, A. Ahlrichs, and O. Benson, “A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum systems,” Appl. Phys. B 122, 33 (2016).
[Crossref]

Appl. Phys. Express (1)

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

Appl. Phys. Lett. (1)

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett. 92, 211103 (2008).
[Crossref]

Commun. Phys. (1)

K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M.-Y. Zheng, X.-P. Xie, and T. Horikiri, “Two-photon comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3, 138 (2020).
[Crossref]

Contemp. Phys. (1)

C. Couteau, “Spontaneous parametric down-conversion,” Contemp. Phys. 59, 291–304 (2018).
[Crossref]

J. Opt. Soc. Am. (1)

S. Lerch, B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, “Tuning curve of type-0 spontaneous parametric down-conversion,” J. Opt. Soc. Am. B30, 953–958 (2013).
[Crossref]

Nature (1)

D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, “Telecom-heralded entanglement between multimode solid-state quantum memories,” Nature 594, 37–40 (2021).
[Crossref]

Opt. Express (3)

Phys. Rev. A (6)

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A 72, 062301 (2005).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

T. E. Stuart, J. A. Slater, F. Bussières, and W. Tittel, “Flexible source of nondegenerate entangled photons based on a two-crystal Sagnac interferometer,” Phys. Rev. A 88, 012301 (2013).
[Crossref]

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

S.-Y. Baek and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A 77, 043807 (2008).
[Crossref]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

Phys. Rev. Lett. (4)

A. Seri, D. Lago-Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum storage of frequency-multiplexed heralded single photons,” Phys. Rev. Lett. 123, 080502 (2019).
[Crossref]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[Crossref]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Sci. Rep. (1)

T. Yamazaki, R. Ikuta, T. Kobayashi, S. Miki, F. China, H. Terai, N. Imoto, and T. Yamamoto, “Massive-mode polarization entangled biphoton frequency comb,” Sci. Rep. 12, 8964 (2022).
[Crossref]

Science (1)

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision for the road ahead,” Science 362, eaam9288 (2018).
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved