Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

IRS-assisted vehicular visible light communications systems: channel modeling and performance analysis

Not Accessible

Your library or personal account may give you access

Abstract

Visible light communications (VLC) is a promising solution as an alternative for the fully occupied radio frequency bands in the near future. The rear (tail) and front of vehicles have lamps that can be used for vehicular visible light communications (VVLC) systems. However, one of the main challenges of VLC systems is the line-of-sight (LoS) blockage issue. In this paper, we propose the installation of intelligent reflecting surfaces (IRSs) (i.e., smart mirrors) on the back of vehicles to overcome the issue in VVLC systems. We assume three different patterns of angular distribution for the radiation intensity: a commercially available LED with an asymmetrical pattern (Philips Luxeon Rebel), a symmetrical Lambertian pattern, and an asymmetrical Gaussian pattern. In the first section of this paper, we obtain the channel model for the IRS-assisted VVLC systems, then we investigate the path loss results versus link distance under different conditions such as weather type (clear, rainy, moderate fog, and thick fog) and radiation patterns. Moreover, the impact of system parameters such as the aperture size of the photodetector (PD), side-to-side and front-to-front distances, the number of IRS elements, and the IRS area are studied. In the second part, we derive a closed-form expression for the maximum achievable link distance versus the probability of error for the IRS-assisted VVLC systems. In addition, in this section we analyze the impact of the parameters in a single-photon avalanche diode (SPAD), background noise, and the system parameters for the path loss.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Vehicular visible light communications noise analysis and modeling

Huanhuan Qin, Jingyuan Liang, and Xizheng Ke
Appl. Opt. 62(16) 4134-4142 (2023)

Performance analysis of a car-to-car visible light communication system

Pengfei Luo, Zabih Ghassemlooy, Hoa Le Minh, Edward Bentley, Andrew Burton, and Xuan Tang
Appl. Opt. 54(7) 1696-1706 (2015)

Intelligent-reflecting-surfaces-assisted hybrid FSO/RF communication with diversity combining: a performance analysis

Smriti Uniyal, Narendra Vishwakarma, R. Swaminathan, and A. S. Madhukumar
Appl. Opt. 62(35) 9399-9413 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.