Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

16QAM optical signal generation scheme based on weighted optimal Euclidean distance

Not Accessible

Your library or personal account may give you access

Abstract

A two-dimensional signal constellation scheme for binary uniform memoryless source transmission in optical fiber channels is studied in this paper. In geometric shaping (GS), optimization algorithms are usually used to change the overall position of constellation points while maintaining the probability of constellation points unchanged. Different optimization functions are used to allocate the position of constellation symbols, thereby improving constellation performance. A 16 quadrature amplitude modulation (QAM) optical signal generation scheme based on weighted optimal Euclidean distance is proposed in this paper. In order to obtain the best constellation diagram and increase the shaping gain, the weighted optimal Euclidean distance that can minimize the bit error rate (BER) over multiple iterative optimizations is used as the objective function. On the one hand, the proposed 16QAM optical signal generation scheme based on weighted optimal Euclidean distance always outperforms the uniform square 16QAM and the uniform circle 16QAM schemes in the back to back (BTB) transmission. On the other hand, after analyzing the simulation demonstration in a 50GBaud coherent optical communication system over 3000 km, results demonstrate that the optical signal to noise ratio (OSNR) performance of this system is better than that of the uniform square 16QAM and the uniform circle 16QAM, which is improved by 0.52 dB and 0.85 dB, respectively. In addition, the proposed 16QAM system increases the transmission distance by 989 km and 741 km, respectively, compared to the other two systems. The performance confirms that the proposed novel 16QAM scheme, to the best of our knowledge, can effectively improve the reliability and transmission distance. Therefore, the proposed scheme has a certain development prospect in the future long-distance transmission of high-speed optical fiber communication.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
DACNN-aided nonlinear equalizer for a probabilistic shaping coherent optical communication system

Yuzhe Li, Huan Chang, Qi Zhang, Ran Gao, Feng Tian, Qinghua Tian, Yongjun Wang, Lan Rao, Dong Guo, Fu Wang, Sitong Zhou, and Xiangjun Xin
Appl. Opt. 63(7) 1881-1887 (2024)

SC and OFDM hybrid coherent optical transmission scheme based on 1-bit bandpass delta-sigma modulation

Tangyao Xie, Xiangjun Xin, Liye Fang, Hengxin Yan, Xiaolong Pan, and Xinying Li
Opt. Express 32(7) 11337-11345 (2024)

Joint intra and inter-channel nonlinear compensation scheme based on improved learned digital back propagation for WDM systems

Xinyu Chi, Chenglin Bai, Fan Yang, Qi Qi, Ruohui Zhang, Hengying Xu, Lishan Yang, Wanxiang Bi, Tianchi Chen, and Shunchang Bai
Opt. Express 32(4) 5095-5116 (2024)

Data availability

The data presented in this paper are not publically available but can be requested from the authors.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.