Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Super-resolution reconstruction of underwater polarized images with a fused attention mechanism

Not Accessible

Your library or personal account may give you access

Abstract

The polarization imaging technique leverages the disparity between target and background polarization information to mitigate the impact of backward scattered light, thereby enhancing image quality. However, the imaging model of this method exhibits limitations in extracting inter-image features, resulting in less-than-optimal outcomes in turbid underwater environments. In recent years, machine learning methodologies, particularly neural networks, have gained traction. These networks, renowned for their superior fitting capabilities, can effectively extract information from multiple images. The incorporation of an attention mechanism significantly augments the capacity of neural networks to extract inter-image correlation attributes, thereby mitigating the constraints of polarization imaging methods to a certain degree. To enhance the efficacy of polarization imaging in complex underwater environments, this paper introduces a super-resolution network with an integrated attention mechanism, termed as SRGAN-DP. This network is a fusion of an enhanced SRGAN network and the high-performance deep pyramidal split attention (DPSA) module, also proposed in this paper. SRGAN-DP is employed to perform high-resolution reconstruction of the underwater polarimetric image dataset, constructed specifically for this study. A comparative analysis with existing algorithms demonstrates that our proposed algorithm not only produces superior images but also exhibits robust performance in real-world environments.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Unsupervised underwater imaging based on polarization and binocular depth estimation

Enlai Guo, Jian Jiang, Yingjie Shi, Lianfa Bai, and Jing Han
Opt. Express 32(6) 9904-9919 (2024)

Super-resolution reconstruction of terahertz images based on a deep-learning network with a residual channel attention mechanism

Xiuwei Yang, Dehai Zhang, Zhongmin Wang, Yanbo Zhang, Jun Wu, Biyuan Wu, and Xiaohu Wu
Appl. Opt. 61(12) 3363-3370 (2022)

Underwater motion scene image restoration based on an improved U-Net network

Jianye Liu, Hu Luo, and Dawei Tu
Appl. Opt. 63(1) 228-238 (2024)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.