Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Investigations of a 1018 nm gain-switched Yb-doped fiber oscillator

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we investigate a 1018 nm gain-switched ytterbium-doped fiber oscillator at a low repetition rate in terms of theory and experiment. Theoretically, a numerical model applicable to a 1018 nm gain-switched ytterbium-doped fiber laser was established. The influence of the pump peak power and active fiber lengths on the 1018 nm gain-switched ytterbium-doped fiber laser was numerically simulated. Experimentally, a compact 1018 nm all-fiber-structured pulsed laser oscillator is constructed, in which a pulse width of 110 ns and a single-pulse energy of 0.1 mJ were obtained. Moreover, the experimental results are in agreement with the numerical simulation ones. To the best of our knowledge, this is the first time that gain-switching technology has been applied to 1018 nm fiber lasers to generate nanosecond pulsed lasers. The model and experimental results can provide a reference for the engineering design of the same type of low repetition rate fiber lasers below the kilohertz level.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
High-power 1018 nm Yb3+ doped fiber lasers with different YDF core and coiling diameters: theoretical and experimental study

Hassan Sarabi, Hamid Latifi, Majid Lafouti, Hossein Fathi, Mohammad Rabiei, and Saeed Sarikhani
Appl. Opt. 62(21) 5619-5626 (2023)

Gain-switched Yb-doped fiber laser for microprocessing

Vid Agrež and Rok Petkovšek
Appl. Opt. 52(13) 3066-3072 (2013)

1018  nm Yb-doped high-power fiber laser pumped by broadband pump sources around 915  nm with output power above 100  W

Yakup Midilli, O. Benjamin Efunbajo, Bartu şimşek, and Bülend Ortaç
Appl. Opt. 56(25) 7225-7229 (2017)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.