Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical Depolarization Properties of Surfaces Illuminated by Coherent Light

Not Accessible

Your library or personal account may give you access

Abstract

An experimental investigation of the depolarization characteristics of complex surfaces illuminated by 6328-Å laser radiation was made on a large scale polarimeter. Measurements were made on specimens such as basalt, limonite, volcanic ash, wet and dry sand, gravel, silt, and foliage in various states of freshness. (For powders and aggregates, depolarization appears more pronounced as the size of the individual particles decreases, and as the roughness and porosity of the surface features increases, whereas depolarization appears less pronounced as water is adsorbed or absorbed.) The depolarization signature of foliage served to characterize a particular species, and dryness of the specimens tended to increase the depolarization. As a practical outcome, it appears that additional surface characterization or signature can be obtained through measurement of depolarization characteristics.

© 1968 Optical Society of America

Full Article  |  PDF Article
More Like This
Scattering of Coherent and Incoherent Light by Latex Hydrosols

George C. Sherman, Franklin S. Harris, and Frank L. Morse
Appl. Opt. 7(3) 421-423 (1968)

Electrooptical Remote Sensing Methods as Nondestructive Testing and Measuring Techniques in Agriculture

Victor I. Myers and William A. Allen
Appl. Opt. 7(9) 1819-1838 (1968)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved