Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical Pumps for Organic Dye Lasers

Not Accessible

Your library or personal account may give you access

Abstract

Several types of low energy, ultrafast flashlamps systems have been investigated as optical pumps for lasers using fast decaying fluorescent materials, in particular, organic dyes. Of the various systems examined, the coaxial lamp with a spark gap switch proved to be the most useful for pumping the organic dyes. Parameters optimized were gas type, gas pressure, discharge volume, and electrical circuitry. At optimum operation, the annular volume of the coaxial lamp is completely filled with the discharge and the current rise time is determined mainly by the external circuit inductance. The rapidity and uniformity of the discharge is attributed to photoionization of the gas fill. Current rise times are typically 140 nsec for energies up to 100 J. Because of the photoionization process, these coaxial lamps are considered to be a different class of flashlamps from the standard capillary discharge lamp, the sliding spark lamp, and the ablating wall lamp. Less useful systems that were investigated are described, and the reason for their deficiencies are analyzed.

© 1969 Optical Society of America

Full Article  |  PDF Article
More Like This
Coaxial Marx-Bank Driver and Flashlamp for Optical Excitation of Organic Dye Lasers

Theodore F. Ewanizky and Roland H. Wright
Appl. Opt. 12(1) 120-122 (1973)

Vortex Stabilized Flashlamps for Dye Laser Pumping

M. E. Mack
Appl. Opt. 13(1) 46-55 (1974)

Early Termination of Flashlamp Pumped Dye Laser Pulses by Shock Wave Formation

S. Blit, A. Fisher, and U. Ganiel
Appl. Opt. 13(2) 335-340 (1974)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.