Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Extended phase-matching properties of periodically poled potassium niobate crystals for mid-infrared polarization-entangled photon-pair generation

Open Access Open Access

Abstract

We report the extended phase-matching (EPM) properties of two kinds of periodically poled potassium niobate (KNbO3 or KN) crystals (i.e., periodic 180°- and 90°-domain structures) that are highly useful for the generation of polarization-entangled photon pairs in the mid-infrared (IR) spectral region. Under the degenerate Type II spontaneous parametric downconversion process satisfying the EPM condition, an input single photon with a frequency of 2ω generates a pair of synchronized photons with identical frequencies of ω that are orthogonally polarized with respect to each other (i.e., the frequency-coincident, polarization-entangled biphoton states). Our simulation results illustrate that the EPM is achievable in the mid-IR spectral region: at the wavelengths of 3.80 μm and 4.03 μm for periodic 90°- and 180°-domain structures, respectively. We will describe in detail the EPM properties of both cases in terms of interaction types and the corresponding nonlinear optic coefficients, phase-matching bandwidths, and domain poling periods. The calculated EPM bandwidths are much broader than 200 nm in the mid-IR for both cases, exhibiting a great potential for nonlinear-optic signal processing in quantum communication systems operating in the mid-IR bands.

© 2016 Optical Society of America

1. INTRODUCTION

Entangled photon pairs are essential for practical demonstrations of quantum teleportation, quantum computing, and entanglement-based quantum cryptography, as well as for many fundamental experiments in quantum optics (e.g., Bell-inequality violations) [1]. Various schemes have been used for the generation of entangled photon pairs, which are based on an optical fiber Sagnac loop [2], a semiconductor quantum dot [3], χ(3) four-wave mixing (FWM) in a photonic crystal fiber [4], and spontaneous parametric downconversion (SPDC) in a χ(2) nonlinear optic crystal [5,6]. Time energy [7], momentum [8,9], and polarization-entangled photon pairs have been successfully demonstrated [10,11]. Among the proposed schemes, the SPDC has been the preferred source for the generation of polarization-entangled biphoton states due to its robustness, stability, and compact implementation [5,6]. Two types of optical pumping regimes—pulsed or continuous-wave (cw) pumping—have been employed for SPDC-based photon sources [6,1214]. Kim et al. proposed the 405-nm, cw-pumped photon-pair source based on SPDC in a periodically poled (PP) potassium titanyl phosphate (KTiOPO4 or KTP) crystal implemented in a Sagnac-loop [12]. Spectral brightness of the proposed scheme was greatly improved by 28 times as much as the previous case via further optimization of beam focusing and crystal property [6]. This “Sagnac-loop with a PPKTP” configuration was also employed in pulsed-pump SPDC photon sources [13,14], and similar types of pulsed-pump systems are now widely in use to demonstrate various quantum phenomena [1518].

The pulsed-pump SPDC systems offer critical advantages over their cw counterparts in many applications, including quantum information processing, teleportation, and communication systems. In the pulsed-pump systems, not only transmission of optical-pulse signals including information, but also nonlinear optic signal processing between them are feasible. For instance, a wave packet transmitted through optical interconnects can be readily decomposed into individual pulse signals by Fourier analysis, and then each optical signal including information can be modulated and controlled by another train of clock pulses [19]. In the cw-pumped systems, however, any optical signal modulated in time cannot be delivered without additional modulation setups.

For the efficient quantum operation of pulsed-pump SPDC systems, the entanglement between photon states constituting each pulse signal should be maintained within the whole optical system. However, the biphoton states generated via SPDC can be maximally entangled only under the cw-pump regime [20,21]. Under the short-pulse regime (i.e., pulses with subpicosecond-duration), the fringe visibility in biphoton interference decreases after interacting pulses propagate along the χ(2) crystal as long as their temporal coherence length [22]. This temporal incoherence is caused by the difference in propagation velocities of the pulses.

Since the SPDC efficiency is proportional to the square of nonlinear optic interaction length along the crystal [23], it is desirable to achieve the compensation of the temporal walk-off between interacting pulses at a longer crystal. This can be accomplished via the group velocity (GV) matching between the pulses, in addition to typical phase-matching for SPDC [e.g., the quasi-phase matching (QPM) in the PPKTP scheme] [24]. Giovannetti et al. defined the simultaneous QPM and GV matching as extended phase matching (EPM), whose theoretical details were reported in [25,26]. In [25], the PPKTP crystal is proposed as an ideal platform suitable for constituting practical quantum photonic networks operating in telecom bands [27]. Here, we note that most of quantum experiments using the PPKTP scheme have been performed in the wavelength range around 800 nm due to the spectral preference of single-photon detection efficiency. However, for quantum applications, including practical photonic networks, the ideal SPDC devices should be compatible with the current optical infrastructure, which requires the compactness, the reliable operation in telecom bands (i.e., near-IR), and the simple interconnection with telecom waveguides (e.g., optical fibers). Requirements of desirable SPDC devices for the generation of polarization-entangled photon pairs in telecom bands were listed in [24], which leads to the use of four kinds of PPKTP isomorphs where degenerate Type II SPDC satisfying the EPM condition is feasible. Under the Type II SPDC, a single photon with a frequency of 2ω produces two orthogonally polarized photons with identical frequencies of ω. Kuzucu et al. reported the first experimental demonstration of the polarization-entangled photon-pair generation at telecom wavelengths under the pulsed-pump EPM scheme in a PPKTP [28]. Jin et al. demonstrated the polarization-entangled photon source using the same scheme, where the EPM condition was satisfied under the pulsed-pump regime (2ps) [29].

As described above, all the previous experiments have been limited from visible to near-IR wavelength regions. In recent years, the mid-IR spectral region has attracted increasing interest as the practical realization of photonic devices offering potential applications in a wide variety of areas, including free-space communications, IR countermeasures, gas sensing, environmental monitoring, and bio- and thermal imaging [30,31]. For instance, the mid-IR region contains strong absorption bands of many pollutant and toxic gases and liquids, allowing highly selective and sensitive detection or imaging, as well as in situ multicomponent monitoring in a variety of different situations (e.g., oil-rigs, coal-mines, landfill sites, and car exhausts). In addition, there exists an atmospheric transmission window between 3 and 5 μm, enabling free-space optical communications and thermal imaging applications in both civil and military situations, as well as the development of IR countermeasures for homeland security. However, the advantages of this spectral range have not been fully exploited in quantum optics due to the limitations in current technology. The mid-IR quantum optics is an unexplored research field, but has novel potential applications, including short-haul free-space quantum communication and cryptography. For this, the development of another PP crystal platform showing the feasibility of EPM in the mid-IR (especially in 3–5 μm) is required, which enables broadcasting of optical-pulse signals (with quantum information) and nonlinear optic signal processing between them under the short-pulse regime. In this paper, we propose two types of PP potassium niobate (KNbO3 or KN) crystals as potential candidates for the mid-IR quantum optics platform. We will describe in detail the EPM properties of both cases—the periodic 180°- and 90°-domain structures in KN—in terms of interaction types and the corresponding nonlinear optic coefficients, EPM bandwidths, and domain-poling periods. Our simulation results will illustrate that the EPMs are feasible in both cases around 4 μm, and that the corresponding EPM bandwidths are much broader than 200 nm. The results show that a great potential for both data transmission and nonlinear-optic signal processing in the mid-IR quantum system.

2. SIMULATION AND ANALYSES

Requirements of desirable PP crystal platform for the generation of polarization-entangled photon pairs can be summarized as: frequency-degenerate Type II SPDC satisfying EPM conditions [24,32]. In this case, the generated photons are indistinguishable in frequency, but different in polarization state (e.g., horizontal for one photon and vertical for the other). These photons are also temporally synchronized at the given length of crystal under the EPM condition, so that they have the same phase evolution within the whole interaction length. Giovannetti et al. described the Bell-state generation process based on this scheme; they showed that all four kinds of Bell states could be readily obtained in Mach–Zehnder and Hong–Ou–Mandel type implementation [26].

KN is categorized as a perovskite ferroelectric crystal with the point group of orthorhombic mm2. The lattice constants of KN are a=0.569nm, b=0.397nm, and c=0.572nm [33]. In this definition, the direction of a spontaneous polarization is along the c-axis; the relations between the crystallographic axes of KN and their optic axes are x=b, y=a, and z=c. Then the order of refractive-index magnitudes is given by nb>na>nc. Figure 1 illustrates a schematic diagram of PPKN with the periodic 180°-domain structures. The green arrow in each ferroelectric domain denotes the direction of a spontaneous polarization (Ps) (i.e., either +c or c). Another type of PPKN with the periodic 90°-domain structures is illustrated in Fig. 2. In this case, two possible directions of Ps are given by either [001] or [001¯]. If we choose the direction of Ps as [001], the 90°-domain walls become parallel to the (101) plane. Then the direction of Ps alternates in each domain (i.e., either [001] or [100]) as shown in Fig. 2(a). Here the x-axis–new optic axis–was defined as being parallel to the crystallographic b-axis. Other optic axes (i.e., y and z) representing the polarization states of interacting waves are also defined in Fig. 2(b).

 figure: Fig. 1.

Fig. 1. Schematic diagram of a PPKN crystal with periodic 180°-domain structures. The green arrow in each domain denotes the direction of a spontaneous polarization (Ps). In a degenerate Type II SPDC using the nonlinear optic coefficient of d15, a y-polarized input photon with a frequency of 2ω generates a pair of the y-, and the z-polarized photons with ω (i.e., 2ωyωy+ωz).

Download Full Size | PPT Slide | PDF

 figure: Fig. 2.

Fig. 2. Schematic diagram of a PPKN crystal with periodic 90°-domain structures. The green arrow in each domain denotes the direction of Ps. In a degenerate Type II SPDC using the nonlinear optic coefficient of d24, a x-polarized input photon with a frequency of 2ω generates a pair of the x- and the y-polarized photons with ω (i.e., 2ωxωx+ωy).

Download Full Size | PPT Slide | PDF

In second-order nonlinear optic processes, including SPDC, the possible interaction type (i.e., the relation between the polarization directions of interacting photons) is determined by deff (the effective nonlinear optic coefficient), which is given by [23]

deff(2ω;ω,ω)=ipi(2ω)jkdijkpj(ω)pk(ω),
where dijk denotes the nonlinear optic coefficient that is available in the given nonlinear optic crystal, and pi(ω) denotes the direction cosines of the polarization direction of interacting photons with frequency ω to the crystallographic i-axis. In a typical case of PPKN with the periodic 180°-domain structures (or PPKN-180°), the Pss in the periodic domains are parallel to each other. Thus, the deff corresponding to the degenerate Type II SPDC is d15, where a y-polarized input photon with a frequency of 2ω generates a pair of the y- and the z-polarized photons with ω (i.e., 2ωyωy+ωz). However, in the case of PPKN with the periodic 90°-domain structures (or PPKN-90°), the Pss in the periodic structures are tilted at +45° and 45° to the domain walls, as shown in Fig. 2(b). Since the d-coefficient required for Type II SPDC is d24, the corresponding deff is given by d24 (cos45°). Then under the degenerate Type II SPDC, an x-polarized input photon with a frequency of 2ω generates a pair of the x- and the y-polarized photons with ω (i.e., 2ωxωx+ωy). Type II interactions and the corresponding deffs for the two considered cases are summarized in Table 1. Here d-coefficients of d15 and d24 for second-harmonic generation at the wavelength of 1064 nm are 12.4 and 12.8 pm/V, respectively [33]. Then the resultant deffs are 12.4 pm/V for the PPKN-180° case and 9.05 pm/V for the PPKN-90° case. Here we note that the deffs for degenerate Type II SPDC are less than 4 pm/V for all four kinds of PPKTP isomorphs that are widely in use for the generation of entangled photon pairs in the near-IR spectral region [24]. The SPDC efficiency is proportional to the square of deff [23]. Since the deffs of the two considered PPKN cases are much larger than their KTP counterparts, more efficient SPDC is feasible in the two considered PPKN cases under the degenerate Type II interaction.

Tables Icon

Table 1. Type II Interaction of Two Types of PPKN and the Corresponding Effective Nonlinear Optic Coefficients

In a typical QPM scheme using a PPKN with the periodic 180°-domain structures, the wave number mismatch between interacting waves is given by

Δkki(2ω)ki(ω)kj(ω)+2π/Λ,
where ki(ω)=ωni(ω)/c denotes the wave number of each interacting wave, and Λ is the domain poling period, as illustrated in Figs. 1 and 2. The subscripts i and j represent the polarization directions of interacting photons, which are given in Table 1. In the PPKN-90° case, however, the direction of beam propagation (i.e., Poynting vector) slightly changes at the domain boundaries [34]. Shichijyo et al. intensively investigated the properties of polarized beam propagation at the 90°-domain walls and proved that the periodic domain structures completely compensate the spatial walk-off between interacting beams (<3°) due to the series of positive and negative refractions at the 90°-domain boundaries [34]. In addition, neither the refractive-index change nor any resultant surface reflection occur at the 90°-domain boundaries, which was confirmed both theoretically and experimentally [34,35]. Therefore, Eq. (2) is still valid in the PPKN-90° case as well, so that all the following analyses are applicable to both PPKN cases in Table 1.

When the QPM condition is satisfied [i.e., Δk=0 in Eq. (2)], the poling period (Λ) can be expressed in the following form:

Λ=λ|2ni(λ/2)ni(λ)nj(λ)|λ2Δn,
where Δn denotes the refractive-index difference between interacting photons. The Sellmeier equations of KN at room temperature are found in [33]. The calculated values of Λ in two types of PPKNs are plotted in Fig. 3 as a function of the generated photon’s wavelength (λ). As shown in Fig. 3, the calculated periods are longer than 16 μm over the entire atmospheric transmission window in the mid-IR (i.e., 3–5 μm). The PP structures with such long poling periods can be readily fabricated with a current electric poling technique based on typical photolithography with a sub-μm-resolution.

 figure: Fig. 3.

Fig. 3. Poling periods of ferroelectric domains in two types of PPKNs plotted as a function of the generated photon wavelength. The results correspond to the case of degenerate Type II QPM SPDC.

Download Full Size | PPT Slide | PDF

When interacting photons with frequencies of ω and 2ω propagate through a PPKN crystal, the GV mismatch (GVM) occurs between them due to their different index-dispersion properties in the crystal. In a KN, the refractive index depends on the polarization state of a photon, as well as its frequency. The GVM is defined as the temporal walk-off (ΔT) between interacting photons per a unit length of crystal (L) as follows:

ΔTL=Δngc,
where c and Δng denote the speed of light in a vacuum and the GV-difference between interacting photons, respectively. Figure 4 plots the calculated GVM as a function of λ. The wavelength points at which the GVMs are zero (i.e., the GV matching wavelengths) are 4.03 μm (PPKN-180°) and 3.80 μm (PPKN-90°), which are all located around 4 μm (i.e., in the middle of the atmospheric transmission window in the mid-IR). The corresponding values of Λ calculated by using Eq. (3) are listed in Table 2. Two types of PPKNs with these poling periods satisfy both the QPM and the GV matching simultaneously (i.e., the EPM condition). As shown in Fig. 4, a zero GVM occurs typically at a single operating wavelength. The poling period is a free parameter that can be chosen such that the QPM and the zero GVM occur at the same operating wavelengths (i.e., the EPM). The calculation results summarized in Table 2 illustrate that the EPM conditions are satisfied in both PPKN cases under the Type II SPDC, allowing for coincident frequency entanglement generation, as in the case in [25].

 figure: Fig. 4.

Fig. 4. GVM behaviors of two types of PPKNs plotted as a function of the generated photon wavelength.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 2. Parameters Required for the EPM in Two Types of PPKNsa

From Eq. (3), the variation of the poling period with the wavelength is derived as

dΛdλ=12Δng(Δn)2.
At the GV matching wavelength (λGV), the group index difference Δng is equal to zero as expected in Eq. (4); the corresponding poling period has an extremum at the same wavelength, as shown in Eq. (4). This means that the poling period for QPM is insensitive to the variation of the wavelength over a wide spectral range around λGV. As a result, Δk in Eq. (2) is also insensitive to the variation of the wavelength, so that the QPM can be maintained over a broader spectral region. Therefore, the generated photons have spectral bandwidths much broader than that of the nonEPM case (sub-nm, typically), which is very promising for nonlinear-optic processing of quantum signals in the mid-IR. Figure 5 shows the generated photon spectra calculated with the well-known Runge–Kutta method, which is based on nonlinear optic-coupled-mode theory [23]. Both types of PPKN cases show broad spectral responses; the full width at half-maximums (FWHMs) of the main spectral bands are 255.5 nm (PPKN-180°) and 227.9 nm (PPKN-90°). In the mid-IR quantum photonic systems, narrow wavelength channels composed of entangled-photon pulses are packed in this broad spectral band with a dense wavelength division. Then the quantum signals loaded in these channels can be broadcast via various types of optical interconnects, or can be modulated within the same spectral band via nonlinear optic interactions. All critical parameters characterizing the EPM properties of the two considered PPKN cases—nonlinear-optic coefficients required for degenerate Type II SPDC, the calculated values of Λ and λGV, and the EPM bandwidths (Δλ)—are summarized in Table 2.

 figure: Fig. 5.

Fig. 5. Normalized intensities of the generated photons calculated for two types of PPKNs. The results clearly illustrate the broad spectral responses of Type II SPDC satisfying the EPM condition.

Download Full Size | PPT Slide | PDF

Now we discuss the temperature behaviors of the EPM properties of the two types of PPKNs. The temperature-dependent Sellmeier equations of KN used for calculation are found in [36,37]. Figure 6(a) shows the variation of λGV plotted as a function of temperature. As depicted in Fig. 6(a), λGVs for both cases are blue-shifted with the increase of crystal’s temperature, but always stays inside the mid-IR band of 3–5 μm under the large temperature change from 20°C to 180°C. The line slopes of the calculated results are 1.56 (PPKN-180°) and 1.39nm/°C (PPKN-90°). In real applications, the operating temperature of PPKN devices can be either fine-tuned or more actively tuned with a simple thermocouple device in order to obtain the desirable EPM properties. The variation of Λ corresponding to the calculated values of λGV is plotted in Fig. 6(b) as a function of the given temperature. Λ is always larger than 17 μm over the whole temperature variation from 20°C to 180°C, and such long Λs can be readily obtained with the current PP technology.

 figure: Fig. 6.

Fig. 6. (a) Temperature behaviors of λGV for two types of PPKNs. For each case, λGV stays inside the mid-IR under the temperature change of 20°C–180°C. (b) The variation of Λ corresponding to λGVs calculated at the given temperature.

Download Full Size | PPT Slide | PDF

Figure 7 shows the temperature variation of the EPM bandwidths of the two considered PPKN cases. Δλs for both cases slightly decrease with the increase of crystal’s temperature (10% for the large temperature change from 20°C to 180°C). The line slopes of the calculated results are 0.22 (PPKN-180°) and 0.15nm/°C (PPKN-90°). In both cases, Δλs are broader than 200 nm over the whole temperature variation, which is still nice for quantum signal processing such as data transmission and nonlinear-optic signal processing. As described in preceding sections, all the EPM properties of the two types of PPKN devices are maintained in the mid-IR under the temperature variation of 20°C–180°C. Considering that the typical operating temperature of PP crystal devices is around 50°C [38], this level of temperature dependence of the PPKN devices is good enough for practical applications.

 figure: Fig. 7.

Fig. 7. Temperature variation of the EPM bandwidths (i.e., the FWHMs of the main spectral bands as discussed in Fig. 5).

Download Full Size | PPT Slide | PDF

3. CONCLUSION

In conclusion, we have studied the EPM properties of two types of PPKNs with either the periodic 180°- or 90°-domain structures. Under the EPM, both QPM and GV matching are simultaneously satisfied; the phase-matching bandwidths for both cases could be greatly increased to broader than 200 nm in the mid-IR (3–5 μm) due to smaller GVMs around this spectral region. The simulation results clearly show that in both PPKN cases, the EPMs are feasible in the mid-IR, especially in 3–5 μm region (the atmospheric transmission window). These are potentially promising properties for the development of new quantum photonic systems (e.g., entanglement-based, free-space communication systems). In the QPM scheme, the maximum values of effective nonlinear optic coefficients could be exploited for the given propagation direction of interacting photons, which is of great importance for the achievement of higher efficiency of Type II SPDC in short-pulse systems. We expect that two considered PPKN devices to be useful for the generation of polarization-entangled biphoton states in the mid-IR, and that this will produce a variety of new applications in quantum information processing with unique advantages.

Funding

National Research Foundation of Korea (NRF) (NRF-2014R1A1A1002020, NRF-2016R1A4A1008978).

REFERENCES

1. D. Bouwmeester, A. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information (Springer, 2001).

2. M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommunication-band source of degenerate entangled photons,” Opt. Lett. 35, 802–804 (2010). [CrossRef]  

3. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000). [CrossRef]  

4. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007). [CrossRef]  

5. F. Steinlechner, M. Gilaberte, M. Jofre, T. Scheidl, J. P. Torres, V. Pruneri, and R. Ursin, “Efficient heralding of polarization-entangled photons from type-0 and type-II spontaneous parametric downconversion in periodically poled KTiOPO4,” J. Opt. Soc. Am. B 31, 2068–2076 (2014). [CrossRef]  

6. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007). [CrossRef]  

7. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999). [CrossRef]  

8. M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62, 2209–2212 (1989). [CrossRef]  

9. Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65, 321–324 (1990). [CrossRef]  

10. A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using time-varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982). [CrossRef]  

11. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef]  

12. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006). [CrossRef]  

13. O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008). [CrossRef]  

14. A. Predojevic, S. Grabher, and G. Weihs, “Pulsed Sagnac source of polarization entangled photon pairs,” Opt. Express 20, 25022–25029 (2012). [CrossRef]  

15. A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009). [CrossRef]  

16. R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011). [CrossRef]  

17. S. Ramelow, A. Mech, M. Giustina, S. Gröblacher, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, A. Zeilinger, and R. Ursin, “Highly efficient heralding of entangled single photons,” Opt. Express 21, 6707–6717 (2013). [CrossRef]  

18. Y. Cao, H. Liang, J. Yin, H.-L. Yong, F. Zhou, Y.-P. Wu, J.-G. Ren, Y.-H. Li, G.-S. Pan, T. Yang, X. Ma, C.-Z. Peng, and J.-W. Pan, “Entanglement-based quantum key distribution with biased basis choice via free space,” Opt. Express 21, 27260–27268 (2013). [CrossRef]  

19. K. J. Lee, S. Liu, F. Parmigiani, M. Ibsen, P. Petropoulos, K. Gallo, and D. J. Richardson, “OTDM to WDM format conversion based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 18, 10282–10288 (2010). [CrossRef]  

20. M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994). [CrossRef]  

21. W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997). [CrossRef]  

22. T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997). [CrossRef]  

23. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

24. T. Kim and K. J. Lee, “Extended phase matching characteristics in periodically poled potassium titanyl phosphate isomorphs,” J. Korea Phys. Soc. 67, 837–842 (2015). [CrossRef]  

25. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002). [CrossRef]  

26. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002). [CrossRef]  

27. M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015). [CrossRef]  

28. O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 169903 (2005). [CrossRef]  

29. R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express 22, 11498–11507 (2014). [CrossRef]  

30. A. Krier, ed., Mid-infrared Semiconductor Optoelectronics (Springer-Verlag, 2006).

31. MIRTHE+ (Mid-Infrared Technologies for Health and the Environment), http://www.mirthe-erc.org/mirthecenter.

32. K. J. Lee, in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF) (Optical Society of America, 2016), paper SeTu2E.4.

33. B. Zysset, I. Biaggio, and P. N. Gunter, “Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence,” J. Opt. Soc. Am. B 9, 380–386 (1992). [CrossRef]  

34. S. Shichijyo, J. Hirohashi, H. Kamio, and K. Yamada, “Total refraction of p-polarized light at the boundary of 90°-domains in the ferroelectric crystal,” Jpn. J. Appl. Phys. 43, 3413–3418 (2004). [CrossRef]  

35. J. Hirohashi and V. Pasiskevicius, “Quasi-phase-matched frequency conversion in KNbO3 structures consisting of 90° ferroelectric domains,” Appl. Phys. B 81, 761–763 (2005). [CrossRef]  

36. D. H. Jundt, P. Gunter, and B. Zysset, “A temperature-dependent dispersion equation for KNbO3,” Nonlinear Opt. 4, 341–345 (1993).

37. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optic Crystals, 3rd ed. (Springer-Verlag, 1999).

38. HC Photonics Corp., http://hcphotonics.com.

References

  • View by:

  1. D. Bouwmeester, A. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information (Springer, 2001).
  2. M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommunication-band source of degenerate entangled photons,” Opt. Lett. 35, 802–804 (2010).
    [Crossref]
  3. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
    [Crossref]
  4. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
    [Crossref]
  5. F. Steinlechner, M. Gilaberte, M. Jofre, T. Scheidl, J. P. Torres, V. Pruneri, and R. Ursin, “Efficient heralding of polarization-entangled photons from type-0 and type-II spontaneous parametric downconversion in periodically poled KTiOPO4,” J. Opt. Soc. Am. B 31, 2068–2076 (2014).
    [Crossref]
  6. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
    [Crossref]
  7. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
    [Crossref]
  8. M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62, 2209–2212 (1989).
    [Crossref]
  9. Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65, 321–324 (1990).
    [Crossref]
  10. A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using time-varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).
    [Crossref]
  11. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [Crossref]
  12. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
    [Crossref]
  13. O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
    [Crossref]
  14. A. Predojevic, S. Grabher, and G. Weihs, “Pulsed Sagnac source of polarization entangled photon pairs,” Opt. Express 20, 25022–25029 (2012).
    [Crossref]
  15. A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
    [Crossref]
  16. R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
    [Crossref]
  17. S. Ramelow, A. Mech, M. Giustina, S. Gröblacher, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, A. Zeilinger, and R. Ursin, “Highly efficient heralding of entangled single photons,” Opt. Express 21, 6707–6717 (2013).
    [Crossref]
  18. Y. Cao, H. Liang, J. Yin, H.-L. Yong, F. Zhou, Y.-P. Wu, J.-G. Ren, Y.-H. Li, G.-S. Pan, T. Yang, X. Ma, C.-Z. Peng, and J.-W. Pan, “Entanglement-based quantum key distribution with biased basis choice via free space,” Opt. Express 21, 27260–27268 (2013).
    [Crossref]
  19. K. J. Lee, S. Liu, F. Parmigiani, M. Ibsen, P. Petropoulos, K. Gallo, and D. J. Richardson, “OTDM to WDM format conversion based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 18, 10282–10288 (2010).
    [Crossref]
  20. M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
    [Crossref]
  21. W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
    [Crossref]
  22. T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
    [Crossref]
  23. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  24. T. Kim and K. J. Lee, “Extended phase matching characteristics in periodically poled potassium titanyl phosphate isomorphs,” J. Korea Phys. Soc. 67, 837–842 (2015).
    [Crossref]
  25. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
    [Crossref]
  26. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
    [Crossref]
  27. M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
    [Crossref]
  28. O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 169903 (2005).
    [Crossref]
  29. R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express 22, 11498–11507 (2014).
    [Crossref]
  30. A. Krier, ed., Mid-infrared Semiconductor Optoelectronics (Springer-Verlag, 2006).
  31. MIRTHE+ (Mid-Infrared Technologies for Health and the Environment), http://www.mirthe-erc.org/mirthecenter .
  32. K. J. Lee, in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF) (Optical Society of America, 2016), paper SeTu2E.4.
  33. B. Zysset, I. Biaggio, and P. N. Gunter, “Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence,” J. Opt. Soc. Am. B 9, 380–386 (1992).
    [Crossref]
  34. S. Shichijyo, J. Hirohashi, H. Kamio, and K. Yamada, “Total refraction of p-polarized light at the boundary of 90°-domains in the ferroelectric crystal,” Jpn. J. Appl. Phys. 43, 3413–3418 (2004).
    [Crossref]
  35. J. Hirohashi and V. Pasiskevicius, “Quasi-phase-matched frequency conversion in KNbO3 structures consisting of 90° ferroelectric domains,” Appl. Phys. B 81, 761–763 (2005).
    [Crossref]
  36. D. H. Jundt, P. Gunter, and B. Zysset, “A temperature-dependent dispersion equation for KNbO3,” Nonlinear Opt. 4, 341–345 (1993).
  37. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optic Crystals, 3rd ed. (Springer-Verlag, 1999).
  38. HC Photonics Corp., http://hcphotonics.com .

2015 (2)

T. Kim and K. J. Lee, “Extended phase matching characteristics in periodically poled potassium titanyl phosphate isomorphs,” J. Korea Phys. Soc. 67, 837–842 (2015).
[Crossref]

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

2014 (2)

2013 (2)

2012 (1)

2011 (1)

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[Crossref]

2010 (2)

2009 (1)

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

2008 (1)

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[Crossref]

2007 (2)

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[Crossref]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref]

2006 (1)

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

2005 (2)

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 169903 (2005).
[Crossref]

J. Hirohashi and V. Pasiskevicius, “Quasi-phase-matched frequency conversion in KNbO3 structures consisting of 90° ferroelectric domains,” Appl. Phys. B 81, 761–763 (2005).
[Crossref]

2004 (1)

S. Shichijyo, J. Hirohashi, H. Kamio, and K. Yamada, “Total refraction of p-polarized light at the boundary of 90°-domains in the ferroelectric crystal,” Jpn. J. Appl. Phys. 43, 3413–3418 (2004).
[Crossref]

2002 (2)

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[Crossref]

2000 (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

1999 (1)

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

1997 (2)

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[Crossref]

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

1994 (1)

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[Crossref]

1993 (1)

D. H. Jundt, P. Gunter, and B. Zysset, “A temperature-dependent dispersion equation for KNbO3,” Nonlinear Opt. 4, 341–345 (1993).

1992 (1)

1990 (1)

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65, 321–324 (1990).
[Crossref]

1989 (1)

M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62, 2209–2212 (1989).
[Crossref]

1982 (1)

A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using time-varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).
[Crossref]

Albota, M. A.

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 169903 (2005).
[Crossref]

Alibart, O.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[Crossref]

Altepeter, J. B.

Asami, S.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

Aspect, A.

A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using time-varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).
[Crossref]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Beyer, J.

Biaggio, I.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Brendel, J.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Calkins, B.

Cao, Y.

Colbeck, R.

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[Crossref]

Dalibard, J.

A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using time-varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).
[Crossref]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optic Crystals, 3rd ed. (Springer-Verlag, 1999).

Endo, H.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

Fedrizzi, A.

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref]

Fiorentino, M.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 169903 (2005).
[Crossref]

Fisher, K.

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[Crossref]

Fujiwara, M.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express 22, 11498–11507 (2014).
[Crossref]

Fulconis, J.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[Crossref]

Gallo, K.

Gerrits, T.

Gilaberte, M.

Giovannetti, V.

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[Crossref]

Gisin, N.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Giustina, M.

Grabher, S.

Grice, W. P.

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[Crossref]

Gröblacher, S.

Gunter, P.

D. H. Jundt, P. Gunter, and B. Zysset, “A temperature-dependent dispersion equation for KNbO3,” Nonlinear Opt. 4, 341–345 (1993).

Gunter, P. N.

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optic Crystals, 3rd ed. (Springer-Verlag, 1999).

Hall, M. A.

Hamel, D. R.

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[Crossref]

Han, T. S.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

Herbst, T.

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref]

Hirohashi, J.

J. Hirohashi and V. Pasiskevicius, “Quasi-phase-matched frequency conversion in KNbO3 structures consisting of 90° ferroelectric domains,” Appl. Phys. B 81, 761–763 (2005).
[Crossref]

S. Shichijyo, J. Hirohashi, H. Kamio, and K. Yamada, “Total refraction of p-polarized light at the boundary of 90°-domains in the ferroelectric crystal,” Jpn. J. Appl. Phys. 43, 3413–3418 (2004).
[Crossref]

Horne, M. A.

M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62, 2209–2212 (1989).
[Crossref]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Ibsen, M.

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Jennewein, T.

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref]

Jin, R.-B.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express 22, 11498–11507 (2014).
[Crossref]

Jofre, M.

Jundt, D. H.

D. H. Jundt, P. Gunter, and B. Zysset, “A temperature-dependent dispersion equation for KNbO3,” Nonlinear Opt. 4, 341–345 (1993).

Kamio, H.

S. Shichijyo, J. Hirohashi, H. Kamio, and K. Yamada, “Total refraction of p-polarized light at the boundary of 90°-domains in the ferroelectric crystal,” Jpn. J. Appl. Phys. 43, 3413–3418 (2004).
[Crossref]

Kärtner, F. X.

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 169903 (2005).
[Crossref]

Keller, T. E.

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

Kim, T.

T. Kim and K. J. Lee, “Extended phase matching characteristics in periodically poled potassium titanyl phosphate isomorphs,” J. Korea Phys. Soc. 67, 837–842 (2015).
[Crossref]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Klyshko, D. N.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[Crossref]

Kumar, P.

Kuzucu, O.

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[Crossref]

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 169903 (2005).
[Crossref]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Lee, K. J.

T. Kim and K. J. Lee, “Extended phase matching characteristics in periodically poled potassium titanyl phosphate isomorphs,” J. Korea Phys. Soc. 67, 837–842 (2015).
[Crossref]

K. J. Lee, S. Liu, F. Parmigiani, M. Ibsen, P. Petropoulos, K. Gallo, and D. J. Richardson, “OTDM to WDM format conversion based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 18, 10282–10288 (2010).
[Crossref]

K. J. Lee, in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF) (Optical Society of America, 2016), paper SeTu2E.4.

Li, Y.-H.

Liang, H.

Lita, A.

Liu, S.

Ma, X.

Maccone, L.

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[Crossref]

Mandel, L.

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65, 321–324 (1990).
[Crossref]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Mech, A.

Medic, M.

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Miki, S.

Nam, S. W.

Nespoli, M.

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optic Crystals, 3rd ed. (Springer-Verlag, 1999).

O’Brien, J. L.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[Crossref]

Ochi, T.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

Ou, Z. Y.

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65, 321–324 (1990).
[Crossref]

Pan, G.-S.

Pan, J.-W.

Parmigiani, F.

Pasiskevicius, V.

J. Hirohashi and V. Pasiskevicius, “Quasi-phase-matched frequency conversion in KNbO3 structures consisting of 90° ferroelectric domains,” Appl. Phys. B 81, 761–763 (2005).
[Crossref]

Patel, M.

Peng, C.-Z.

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Petropoulos, P.

Poppe, A.

Predojevic, A.

Prevedel, R.

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[Crossref]

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

Pruneri, V.

Ramelow, S.

Rarity, J. G.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[Crossref]

Ren, J.-G.

Resch, K. J.

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[Crossref]

Richardson, D. J.

Roger, G.

A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using time-varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).
[Crossref]

Rubin, M. H.

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[Crossref]

Sasaki, M.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express 22, 11498–11507 (2014).
[Crossref]

Scheidl, T.

F. Steinlechner, M. Gilaberte, M. Jofre, T. Scheidl, J. P. Torres, V. Pruneri, and R. Ursin, “Efficient heralding of polarization-entangled photons from type-0 and type-II spontaneous parametric downconversion in periodically poled KTiOPO4,” J. Opt. Soc. Am. B 31, 2068–2076 (2014).
[Crossref]

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[Crossref]

Shapiro, J. H.

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[Crossref]

Shichijyo, S.

S. Shichijyo, J. Hirohashi, H. Kamio, and K. Yamada, “Total refraction of p-polarized light at the boundary of 90°-domains in the ferroelectric crystal,” Jpn. J. Appl. Phys. 43, 3413–3418 (2004).
[Crossref]

Shih, Y. H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[Crossref]

Shimizu, R.

Shimony, A.

M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62, 2209–2212 (1989).
[Crossref]

Steinlechner, F.

Tajima, A.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

Takeoka, M.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

Terai, H.

Tiefenbacher, F.

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

Tittel, W.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Torres, J. P.

Ursin, R.

Wadsworth, W. J.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[Crossref]

Wakui, K.

Walmsley, I. A.

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[Crossref]

Wang, L. J.

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65, 321–324 (1990).
[Crossref]

Wang, Z.

Weihs, G.

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Wieczorek, W.

Wong, F. N. C.

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[Crossref]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 169903 (2005).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[Crossref]

Wu, Y.-P.

Yamada, K.

S. Shichijyo, J. Hirohashi, H. Kamio, and K. Yamada, “Total refraction of p-polarized light at the boundary of 90°-domains in the ferroelectric crystal,” Jpn. J. Appl. Phys. 43, 3413–3418 (2004).
[Crossref]

Yamashita, T.

Yang, T.

Yin, J.

Yong, H.-L.

Yoshino, K.-I.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

Zbinden, H.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Zeilinger, A.

S. Ramelow, A. Mech, M. Giustina, S. Gröblacher, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, A. Zeilinger, and R. Ursin, “Highly efficient heralding of entangled single photons,” Opt. Express 21, 6707–6717 (2013).
[Crossref]

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62, 2209–2212 (1989).
[Crossref]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Zhou, F.

Zou, X. Y.

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65, 321–324 (1990).
[Crossref]

Zysset, B.

D. H. Jundt, P. Gunter, and B. Zysset, “A temperature-dependent dispersion equation for KNbO3,” Nonlinear Opt. 4, 341–345 (1993).

B. Zysset, I. Biaggio, and P. N. Gunter, “Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence,” J. Opt. Soc. Am. B 9, 380–386 (1992).
[Crossref]

Appl. Phys. B (1)

J. Hirohashi and V. Pasiskevicius, “Quasi-phase-matched frequency conversion in KNbO3 structures consisting of 90° ferroelectric domains,” Appl. Phys. B 81, 761–763 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

J. Korea Phys. Soc. (1)

T. Kim and K. J. Lee, “Extended phase matching characteristics in periodically poled potassium titanyl phosphate isomorphs,” J. Korea Phys. Soc. 67, 837–842 (2015).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

S. Shichijyo, J. Hirohashi, H. Kamio, and K. Yamada, “Total refraction of p-polarized light at the boundary of 90°-domains in the ferroelectric crystal,” Jpn. J. Appl. Phys. 43, 3413–3418 (2004).
[Crossref]

Nat. Phys. (2)

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[Crossref]

Nonlinear Opt. (1)

D. H. Jundt, P. Gunter, and B. Zysset, “A temperature-dependent dispersion equation for KNbO3,” Nonlinear Opt. 4, 341–345 (1993).

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. A (6)

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[Crossref]

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[Crossref]

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[Crossref]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[Crossref]

Phys. Rev. Lett. (8)

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[Crossref]

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 169903 (2005).
[Crossref]

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[Crossref]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62, 2209–2212 (1989).
[Crossref]

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65, 321–324 (1990).
[Crossref]

A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using time-varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Science (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Other (7)

D. Bouwmeester, A. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information (Springer, 2001).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

A. Krier, ed., Mid-infrared Semiconductor Optoelectronics (Springer-Verlag, 2006).

MIRTHE+ (Mid-Infrared Technologies for Health and the Environment), http://www.mirthe-erc.org/mirthecenter .

K. J. Lee, in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF) (Optical Society of America, 2016), paper SeTu2E.4.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optic Crystals, 3rd ed. (Springer-Verlag, 1999).

HC Photonics Corp., http://hcphotonics.com .

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of a PPKN crystal with periodic 180°-domain structures. The green arrow in each domain denotes the direction of a spontaneous polarization (Ps). In a degenerate Type II SPDC using the nonlinear optic coefficient of d15, a y-polarized input photon with a frequency of 2ω generates a pair of the y-, and the z-polarized photons with ω (i.e., 2ωyωy+ωz).
Fig. 2.
Fig. 2. Schematic diagram of a PPKN crystal with periodic 90°-domain structures. The green arrow in each domain denotes the direction of Ps. In a degenerate Type II SPDC using the nonlinear optic coefficient of d24, a x-polarized input photon with a frequency of 2ω generates a pair of the x- and the y-polarized photons with ω (i.e., 2ωxωx+ωy).
Fig. 3.
Fig. 3. Poling periods of ferroelectric domains in two types of PPKNs plotted as a function of the generated photon wavelength. The results correspond to the case of degenerate Type II QPM SPDC.
Fig. 4.
Fig. 4. GVM behaviors of two types of PPKNs plotted as a function of the generated photon wavelength.
Fig. 5.
Fig. 5. Normalized intensities of the generated photons calculated for two types of PPKNs. The results clearly illustrate the broad spectral responses of Type II SPDC satisfying the EPM condition.
Fig. 6.
Fig. 6. (a) Temperature behaviors of λGV for two types of PPKNs. For each case, λGV stays inside the mid-IR under the temperature change of 20°C–180°C. (b) The variation of Λ corresponding to λGVs calculated at the given temperature.
Fig. 7.
Fig. 7. Temperature variation of the EPM bandwidths (i.e., the FWHMs of the main spectral bands as discussed in Fig. 5).

Tables (2)

Tables Icon

Table 1. Type II Interaction of Two Types of PPKN and the Corresponding Effective Nonlinear Optic Coefficients

Tables Icon

Table 2. Parameters Required for the EPM in Two Types of PPKNsa

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

deff(2ω;ω,ω)=ipi(2ω)jkdijkpj(ω)pk(ω),
Δkki(2ω)ki(ω)kj(ω)+2π/Λ,
Λ=λ|2ni(λ/2)ni(λ)nj(λ)|λ2Δn,
ΔTL=Δngc,
dΛdλ=12Δng(Δn)2.

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved