Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared

Open Access Open Access

Abstract

Infrared optical constants collected from the literature are tabulated. The data for the noble metals and Al, Pb, and W can be reasonably fit using the Drude model. It is shown that 1(ω)=2(ω)ωp2/(2ωτ2) at the damping frequency ω = ωτ. Also −1(ωτ) ≃ −(½) 1(0), where the plasma frequency is ωp.

© 1983 Optical Society of America

I. Introduction

Many measurements of the optical constants of metals have been made, primarily at near IR, visible, and UV wavelengths. Brandli and Sievers[1] have measured Au and Pb in the far IR. For the near and far IR we have compiled these data and have tabulated the real and imaginary parts of the dielectric function, 1 and 2, respectively, the index of refraction n and the extinction index k for each metal. Drude model[2] parameters giving a reasonable fit to the data are given for Au, Ag, Cu, Al, Pb, and W. In general, the Drude model is not expected to be appropriate for transition metals in the near and middle IR, but a good fit can be obtained for W with a Drude model dielectric function.

Weaver et al.[3] have compiled extensive tables or optical properties of metals which have been recently published. Most of their tables do not extend beyond 12-μm wavelength, while our compilation extends to the longest wavelength for which data are available. Another standard compilation is that of Haas and Hadley in the AMERICAN INSTITUTE OF PHYSICS HANDBOOK.[4] However, this includes data only up to 1967. Except for a few cases, the data presented here are more recent.

Bennett and Bennett[5] have shown that the Drude model fits the measured reflectance of gold, silver, and aluminum in the 3–30-μm wavelength range with one adjustable parameter; i.e., the Drude model parameters were obtained from the dc resistivity and fitted with one free electron per atom for gold and silver and 2.6 free electrons per atom for aluminum. Brandli and Sievers have shown that the Drude model is an excellent fit to their far IR measurements on lead and provides a good fit for gold with no adjustable parameters.

II. Definitions and Equations

In keeping with IR spectroscopic notation, all frequencies will be expressed in cm−1. The complex dielectric function c and the complex index of refraction nc are defined as

c1+i2nc2(n+ik)2.

The Drude model dielectric function is

c=ωp2ω2+iωωτ,

where ω, ωp, and ωτ have units of cm−1. Separating the real and imaginary parts yields

1=ωp2ω2+ωτ2,
2=ωp2ωτω3+ωωτ2.

In these equations, the plasma frequency[6] is

ωp(cm1)=12πc(4πNe2m*)1/2,

where N is the free electron density, e is the electron charge, m* is the effective mass of the electrons, and is the high frequency dielectric constant. The damping frequency ωτ expressed in cm−1 is

ωτ(cm1)=12πcτ,

where τ is the electron lifetime in seconds and c is the velocity of light. Note that for low frequencies

1(0)(ωpωτ)2.

The dc conductivity σ0 is related to ωp and ωτ by

σ0=ωp2/(4πωτ)

with σ0 having units of cm−1. This can be expressed in terms of the dc resistivity ρ0:

σ0(cm1)=1/[2πcρo(s)]=(9×1011)/[2πcρ0(Ωcm)].

To analyze the data of Brandli, and Sievers[1] it is convenient to write the surface impedance Z(ω) for the Drude model[2]:

Z(ω)R(ω)+iX(ω)=4πc(1+i)(ωωτ2ωp2)1/2(1+iωωτ)1/2.

We shall need only R(ω):

R(ω)=4πc(ωωτ2ωp2)1/2[ωωτ+(1+ω2ωτ2)1/2]1/2.

III. Determination of Drude Model Parameters

All data in the form of n and k were changed to 1 and 2. Equations (3) and (4) were solved for ωτ, eliminating ωp:

ωτ=ω2(11).

This equation was solved to determine ωτ using 1 and 2 at some frequency ω. Then ωp was obtained from

ωp2=(11)(ω2+ωτ2).

This was done for several values of ω to obtain several pairs of ωτ and ωp, which produce the curve with the best eyeball fit to the data.

The one exception to this process was the measurements of Brandli and Sievers[1] for Au and Pb. They reported values of R(ω)/Z0 where Z0 = (4π)/c. For the far IR, Eq. (11) reduces to

R(ω)Z0=(ωωτ2ωp2)1/2.

ωτ was obtained from this data using ωn from the near IR fit. This value of ωτ was used for gold and lead rather than the ωτ obtained from the near IR fit.

We note from Eq. (12) the frequency for which −1(ω) = 2(ω) is very nearly ω = ωτ since −1 ≫ 1. With ω = ωτ both components (−1 and 2) of the dielectric function are ωp2/(2ωτ2). Thus the Drude parameters, ωτ and ωp, can be determined at the crossover from ω = ωτ and the value of the dielectric function. Note that 1(0)ωp2/ωτ2; so −½1(0) ≃ −1(ωτ).

IV. Data

Figures 112 are plots of −1(ω) and 2(ω) for the twelve metals. The high frequency termination occurs where the Drude model becomes invalid. The solid lines are calculated from the Drude model with the parameters listed in Table 13. Tables 112 present the collected values of 1, 2, n and k. Table 13 summarizes the Drude model parameters from our fit (for Ag, Au, Cu, Al, Pb, and W) as well as ωτ calculated from ωp and the AIP Handbook[19] values of the dc resistivity. Dielectric functions for all metals considered in this article except Pb have been tabulated by Weaver et al. for the UV, visible, and near IR.

Finally, we disclaim any physical signficance for the Drude model. The intent is only to parametrize the optical constants for these metals even when there is some question as to the physical meaning of the parameters. The transition metals show interband transitions and cannot be fit with a Drude model in the IR (with the exception of W). Even the noble metals in the IR can have small interband contributions to the dielectric constants.[20]

This work was partially supported by the U.S. Army, DAAK-11-82-C-0052. We gratefully acknowledge the valuable advice of Jean M. Bennett, David Begley, David Bryan, Kul Bhasin, and W. F. Parks.

Figures and Tables

 figure: Fig. 1

Fig. 1 Aluminum: −1(ω) and 2(ω) vs frequency. The solid line is the Drude model. The data from Ref. [7] are: Shiles et al., □ for both −1 and 2; Bennett and Bennett * for −1 and 2; Schulz, ⋄ for −1 and 2.

Download Full Size | PDF

 figure: Fig. 2

Fig. 2 Copper: −1(ω) and 2(ω) vs frequency. The solid line is the Drude model. The data from Ref. [8] are: Schulz, ⋄ for both −1 and 2; Lenham and Treherne, * for −1 and 2; Robusto and Braunstein, □ for both; Hageman et al., × for both; and Dold and Mecke, Δ for both.

Download Full Size | PDF

 figure: Fig. 3

Fig. 3 Gold: −1(ω) and 2(ω) vs frequency. The solid line is the Drude model. The data from Ref. [9] are: Bennett and Bennett, * for both −1 and 2; Schulz, ⋄ for both; Motulevich and Shubin, □ for both; Padalka and Shklyarevskii, ○ for both; Bolotin et al., × for both; Brandli and Sievers, + for both; Weaver et al., Δ for both.

Download Full Size | PDF

 figure: Fig. 4

Fig. 4 Lead: −1(ω) and 2(ω) vs frequency. The solid line represents the Drude model. The data from Ref. [10] are: Brandli and Sievers, × for −1 and + for 2; and Golovashkin and Motulevich, Δ for −1 and □ for 2.

Download Full Size | PDF

 figure: Fig. 5

Fig. 5 Silver: −1(ω) and 2(ω) vs frequency. The solid line is the Drude model. The data from Ref. [11] are: Bennett and Bennett, * for both −1 and 2; Schulz, ⋄ for both; and Hagemann et al., × for both.

Download Full Size | PDF

 figure: Fig. 6

Fig. 6 Colbalt: −1(ω) and 2(ω) vs frequency. The data from Ref. [12] are: Kirillova and Charikov, + for −1 and □ for 2; Johnson and Christy, ⋄ for −1 and ○ for 2; and Weaver et al, × for −1 and Δ for 2.

Download Full Size | PDF

 figure: Fig. 7

Fig. 7 Iron: −1(ω) and 2(ω) vs frequency. The data from Ref. [13] are: Weaver et al., × for −1 and Δ for 2; Bolotin et al., ⋄ for −1 and ○ for 2.

Download Full Size | PDF

 figure: Fig. 8

Fig. 8 Nickel: −1(ω) and 2(ω) vs frequency. The data from Ref. [14] are: Lynch et al., × for −1 and Δ for 2; Johnson and Christy, ⋄ for −1 and ○ for 2.

Download Full Size | PDF

 figure: Fig. 9

Fig. 9 Palladium: −1(ω) and 2(ω) vs frequency. The data from Ref. [15] are: Weaver and Benbow, ⋄ for −1 and ○ for 2; Bolotin et al., + for −1 and □ for 2; Johnson and Christy, × for −1 and Δ for 2.

Download Full Size | PDF

 figure: Fig. 10

Fig. 10 Platinum: −1(ω) and 2(ω) vs frequency. The data from Ref. [16] are Weaver et al., Δ for −1 and □ for 2.

Download Full Size | PDF

 figure: Fig. 11

Fig. 11 Titanium: −1(ω) and 2(ω) vs frequency. The data from Ref. [17] are: Kirillova and Charikov, □ for both −1 and 2; Lynch et al., Δ for both; Johnson and Christy, ○ for both; Kirillova and Charikov, + for both; Bolotin et al., × for both.

Download Full Size | PDF

 figure: Fig. 12

Fig. 12 Tungsten: −1(ω) and 2(ω) vs frequency. The solid line is the Drude model. The data from Ref. [18] are: Nomerovannaya et al., □ for both −1 and 2; Weaver et al., Δ for both.

Download Full Size | PDF

Tables Icon

TABLE 1. Al, ALUMINUME. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, Phys. Rev. B 22, 1612 (1980)

Tables Icon

H. E. Bennett and J. M. Bennett, Optical Properties and Electronics Structure of Metals and Alloys, ed. F. Abeles (North–Holland, 1966), p. 175.

Tables Icon

L. G. Schulz, J. Opt. Soc. Am. 44, 357 (1954) and 362 (1954).

Tables Icon

TABLE 2. Cu, COPPERL. G. Schulz, J. Opt. Am. 44, 357 and 362 (1954).

Tables Icon

A. P. Lenham and D. M. Treherne, J. Opt. Soc. Am. 56, 683 (1966).

Tables Icon

P. F. Robusto and Braunstein, Phys. Stat. Sol. (b) 107, 443 (1981).

Tables Icon

H. J. Hagemann, W. Gudat, and C. Kunz, J. Opt. Soc. Am. 65, 742 (1975).

Tables Icon

B. Dold and R. Mecke, Optik 22, 435 (1965).

Tables Icon

TABLE 3. Au, GOLDH. E. Bennett and J. M. Bennett, Optical Properties and Electronic Structure of Metals and Alloys edited by F. Abeles (North–Holland, Amsterdam, 1966), p. 175.

Tables Icon

L. G. Schulz, J. Opt. Soc. Am. 44, 357 and 362 (1954).

Tables Icon

G. P. Motulevich and A. A. Shubin, Soviet Phys. JETP 20, 560 (1965).

Tables Icon

V. G. Padalka and I. N. Shklyarevskii, Opt. Spectr. U.S.S.R. 11, 285 (1961).

Tables Icon

G. A. Bolotin, A. N. Voloshinskii, M. M. Neskov, A. V. Sokolov, and B. A. Charikov, Phys. Met. and Met. 13, 823 (1962).

Tables Icon

G. Brandli and A. J. Sievers, Phy. Rev. B 5, 3550 (1972).

Tables Icon

J. H. Weaver, C. Krafka, D. W. Lynch, and E. E. Koch (with C. G. Olson), Physics Data, Optical Properties of Metals, (Fach–Information Zentrum, Kalsrube, FOR, 1981).

Tables Icon

TABLE 4. Pb, LEADG. Brandli and A. J. Sievers, Phys. Rev. B 5, 3550 (1972).

Tables Icon

A. I. Golovashkin and G. P. Motulevich, Soviet Physics JETP 26, 881 (1968)

Tables Icon

TABLE 5. Ag, SILVERH. E. Bennett and J. M. Bennett in Optical Properties and Electronic Structure of Metals and Alloys, edited by F. Abeles (North–Holland, Amsterdam, 1966), p. 175.

Tables Icon

L. G. Schulz, J. Opt. Soc. Am. 44, p. 357 and 362 (1954).

Tables Icon

H. J. Hageman, W. Gudat, and C. Kunz, J. Opt. Soc. Am. 65, 742 (1975).

Tables Icon

TABLE 6. Co, COBALTM. M. Kirillova and B. A. Charikov, Opt. Spectry. 17, 134 (1964).

Tables Icon

P. B. Johnson and R. W. Christy, Phys. B 9, 5056 (1974).

Tables Icon

J. H. Weaver, E. Colavita, D. W. Lynch and R. Rosei, Phys. Rev. B 19, 3850 (1979).

Tables Icon

TABLE 7. Fe, IronJ. H. Weaver, E. Colavita, D. W. Lynch, and R. Rosei, Phys. Rev. B 19, 3850 (1979).

Tables Icon

G. A. Bolotin, M. M. Kirillova, and V. M. Mayevskiy, Phys. Met. Metall, 27(2) 31 (1969).

Tables Icon

TABLE 8. Ni, NICKELD. W. Lynch, R. Rosei and J. H. Weaver, Solid State Commun. 9, 2195 (1971).

Tables Icon

B. Johnson and R. W. Christy, Phys. Rev. B 9, 5056 (1974).

Tables Icon

TABLE 9. Pd, PalladiumJ. H. Weaver and R. L. Bendow, Phys. Rev. B 12, 3509 (1975).

Tables Icon

G. A. Bolotin, M. M. Kirilova, L. V. Nomerovannaya, and M. M. Noskov, Fiz. Metal. Metalloved 23, 463 (1967).

Tables Icon

P. B. Johnson and R. W. Christy, Phys. Rev. B 9, 5056 (1974).

Tables Icon

TABLE 10. Pt, PlatinumJ. H. Weaver, Phys. Rev. B 11, 1416 (1975).

Tables Icon

J. H. Weaver, D. W. Lynch, and C. G. Olson, Phys. Rev. B 10, 501 (1974).

Tables Icon

TABLE 11. Ti, TITANIUMM. M. Kirillova and B. A. Charikov, Opt. Spectry 17, 134 (1964).

Tables Icon

D. W. Lynch, C. G. Olson, and J. H. Weaver, Phys. Rev. B 11, 3617 (1975).

Tables Icon

P. B. Johnson and R. W. Christy, Phys. Rev. B 9, 5056 (1974).

Tables Icon

M. M. Kirillova and B. A. Charikov, Phys. Met. 15, 138 (1963).

Tables Icon

G. A. Bolotin, A. N. Voloshinskii, M. M. Neskov, A. V. Sokolov, and B. A. Charikov, Phys. Met. and Met. 13, 823 (1962).

Tables Icon

TABLE 12. W, TUNGSTENL. V. Nomerovannaya, M. M. Kirillova, and M. M. Noskov, Opt. Spectry. 17, 134 (1964).

Tables Icon

J. H. Weaver, D. W. Lynch and C. G. Olson, Phys. Rev. B 12, 1293 (1975).

Tables Icon

Table 13. Optical Parameters Found using a Drude Model Fit of the Experimental Dielectric Functions for Six Metals for which the Dielectric Functions could be Fit; here ωf is the Frequency at which the Fit is Forced, and −1(0) is −1(ω) at dc; the Crossover Frequency Applies to −12.

References

1. G. Brandli and A. J. Sievers, Phys. Rev. B 5, 3550 (1972). [CrossRef]  

2. P. Drude, Theory of Optics (Longmans, Green, New York, 1922; Dover, New York, 1968). A more modern reference is F. Wooten, Optical Properties of Solids (Academic, New York, 1972), p. 52. For the Drude model and surface impedance see B. Donovan, Elementary Theory of Metals (Pergamon, New York, 1967), p. 220.

3. J. H. Weaver, C. Krafka, D. W. Lynch, and E. E. Koch, “Part 1: The Transition Metals,” “Part 2, Noble Metals, Aluminum, Scandium, Yttrium, the Lanthanides, and the Actinides,” in Physics Data, Optical Properties of Metals (Fachinformationszentrum 7514 Eggenstein-Leopoldshafen 2, Karlsruhe, Federal Republic of Germany, 1981).

4. G. Haas and L. Hadley, in American Institute of Physics Handbook, D. E. Gray, Ed. (McGraw-Hill, New York, 1972), p. 6–118.

5. H. E. Bennett and J. M. Bennett, in Optical Properties and Electronic Structure of Metals and Alloys, F. Abeles, Ed., (North-Holland, Amsterdam; Wiley, New York, 1966), Sec. II.6, p. 175. For Ag, Au, and AL for ω, they estimated 145, 216, and 663 cm−1, respectively.

6. For a single carrier type (electrons) the plasma frequency ωp is as given in Eq. (5) where the dielectric constant is (the contribution from the core electrons at high frequencies). Often m* = m and = 1 are assumed. For discussion see H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959); the last paragraph on p. 790 is most relevant. [CrossRef]  

7. Al: E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, Phys. Rev. B 22, 1612 (1980); [CrossRef]  H. E. Bennett and J. M. Bennett, Optical Properties and Electronic Structure of Metals and Alloys, F. Abeles, Ed. (North Holland, Amsterdam, 1966), p. 175; L. G. Schulz, J. Opt. Soc. Am. 44, 357, 362 (1954). [CrossRef]  

8. Cu: L. G. Schulz, J. Opt. Soc. Am. 44, 357, 362 (1954); [CrossRef]  A. P. Lenham and D. M. Treherne, J. Opt. Soc. Am. 56, 683 (1966); [CrossRef]  P. F. Robusto and R. Braunstein, Phys. Status Solidi B 107, 443 (1981); [CrossRef]  H. J. Hageman, W. Gudat, and C. Kunz, J. Opt. Soc. Am. 65, 742 (1975); [CrossRef]  B. Dold and R. Mecke, Optik 22, 435 (1965).

9. Au: H. E. Bennett and J. M. Bennett, Optical Properties and Electronic Structure of Metals and Alloys, F. Abeles, Ed. (North-Holland, Amsterdam, 1966), p. 75; L. G. Schulz, J. Opt. Soc. Am. 44, 357, 362 (1954); [CrossRef]  G. P. Motulevich and A. A. Shubin, Sov. Phys. JETP 20, 560 (1965); V. G. Padalka and I. N. Shklyarevskii, Opt. Spectrosc. 11, 285 (1961); G. A. Bolotin, A. N. Voloshinskii, M. M. Kirilbra, M. M. Neskov, A. V. Sokolov, and B. A. Charikov, Fiz. Met. Metalloved. 13, 823 (1962); G. Brändli and A. J. Sievers, Phys. Rev. B 5, 3550 (1972). [CrossRef]  

10. Pb: G. Brandli and A. J. Sievers, Phys. Rev. B 5, 3550 (1972); [CrossRef]  A. I. Golovashkin and G. P. Motulevich, Sov. Phys. JETP 26, 881 (1968).

11. Ag: H. E. Bennett and J. M. Bennett, in Optical Properties and Electronic Structure of Metals and AlloysF. Abeles, Ed. (North-Holland, Amsterdam, 1966), p. 175; L. G. Schulz, J. Opt. Soc. Am. 44, 357, and 362 (1954); [CrossRef]  H. J. Hagemann, W. Endat, and C. Kunz, J. Opt. Soc. Am. 65, 742 (1975). [CrossRef]  

12. Co: M. M. Kirillova and B. A. Charikov, Opt. Spectrosc. 17, 134 (1964); P. B. Johnson and R. W. Christy, Phys. Rev. B 9, 5056 (1974); [CrossRef]  J. H. Weaver, E. Colavita, D. W. Lynch, and R. Rosei, Phys. Rev. B 19, 3850 (1979). [CrossRef]  

13. Fe: J. H. Weaver, E. Colavita, D. W. Lynch, and R. Rosei, Phys. Rev. B 19, 3850 (1979); [CrossRef]  G. A. Bolotin, M. M. Krillova, and V. M. Mayevskiy, Phys. Met. Mettalogr. USSR 27, No. 2, 31 (1969).

14. Ni: D. W. Lynch, R. Rosei, and J. H. Weaver, Solid State Commun. 9, 2195 (1973); [CrossRef]  P. B. Johnson and R. W. Christy, Phys. Rev. B 9, 5056 (1974). [CrossRef]  

15. Pd: J. H. Weaver and R. L. Benbow, Phys. Rev. B 12, 3509 (1975); [CrossRef]  G. A. Bolotin, M. M. Kirillova, L. V. Nomerovannaya, and M. M. Noskov, Fiz. Met. Mettalloved. 23, 463 (1967); P. B. Johnson and R. W. Christy, Phys. Rev. B 9, 5056 (1974). [CrossRef]  

16. Pt: J. H. Weaver, Phys. Rev. B 11, 1416 (1975); [CrossRef]  J. H. Weaver, C. G. Olson, and D. W. Lynch, Phys. Rev. B 10, 501 (1974). [CrossRef]  

17. Ti: M. M. Kirillova and B. A. Charikov, Opt. Spectrosc. 17, 134 (1964); D. W. Lynch, C. G. Olson, and J. H. Weaver, Phys. Rev. B 11, 3617 (1975); [CrossRef]  P. B. Johnson and R. W. Christy, Phys. Rev. B 9, 5056 (1974); [CrossRef]  M. M. Kirillova and B. A. Charikov, Phys. Met. 15, 138 (1963); G. A. Bolotin, A. N. Voloshinskii, M. M. Noskov, A. V. Sokolov, and B. A. Charikov, Phys. Met. Metallogr. USSR 13, 823 (1962).

18. W: L. V. Nomerovannaya, M. M. Kirillova, and M. M. Noskov, Opt. Spectrosc. 17, 134 (1964); J. H. Weaver, D. W. Lynch, and C. G. Olson, Phys. Rev. B 12, 1293 (1975). [CrossRef]  

19. J. Babiskin and J. R. Anderson, in American Institute of Physics Handbook, (McGraw-Hill, New York, 1972), p. 9–39.

20. G. R. Parkins, W. E. Lawrence, and R. W. Christy, Phys. Rev. B 23, 6408 (1981). [CrossRef]  

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Aluminum: −1(ω) and 2(ω) vs frequency. The solid line is the Drude model. The data from Ref. 7 are: Shiles et al., □ for both −1 and 2; Bennett and Bennett * for −1 and 2; Schulz, ⋄ for −1 and 2.
Fig. 2
Fig. 2 Copper: −1(ω) and 2(ω) vs frequency. The solid line is the Drude model. The data from Ref. 8 are: Schulz, ⋄ for both −1 and 2; Lenham and Treherne, * for −1 and 2; Robusto and Braunstein, □ for both; Hageman et al., × for both; and Dold and Mecke, Δ for both.
Fig. 3
Fig. 3 Gold: −1(ω) and 2(ω) vs frequency. The solid line is the Drude model. The data from Ref. 9 are: Bennett and Bennett, * for both −1 and 2; Schulz, ⋄ for both; Motulevich and Shubin, □ for both; Padalka and Shklyarevskii, ○ for both; Bolotin et al., × for both; Brandli and Sievers, + for both; Weaver et al., Δ for both.
Fig. 4
Fig. 4 Lead: −1(ω) and 2(ω) vs frequency. The solid line represents the Drude model. The data from Ref. 10 are: Brandli and Sievers, × for −1 and + for 2; and Golovashkin and Motulevich, Δ for −1 and □ for 2.
Fig. 5
Fig. 5 Silver: −1(ω) and 2(ω) vs frequency. The solid line is the Drude model. The data from Ref. 11 are: Bennett and Bennett, * for both −1 and 2; Schulz, ⋄ for both; and Hagemann et al., × for both.
Fig. 6
Fig. 6 Colbalt: −1(ω) and 2(ω) vs frequency. The data from Ref. 12 are: Kirillova and Charikov, + for −1 and □ for 2; Johnson and Christy, ⋄ for −1 and ○ for 2; and Weaver et al, × for −1 and Δ for 2.
Fig. 7
Fig. 7 Iron: −1(ω) and 2(ω) vs frequency. The data from Ref. 13 are: Weaver et al., × for −1 and Δ for 2; Bolotin et al., ⋄ for −1 and ○ for 2.
Fig. 8
Fig. 8 Nickel: −1(ω) and 2(ω) vs frequency. The data from Ref. 14 are: Lynch et al., × for −1 and Δ for 2; Johnson and Christy, ⋄ for −1 and ○ for 2.
Fig. 9
Fig. 9 Palladium: −1(ω) and 2(ω) vs frequency. The data from Ref. 15 are: Weaver and Benbow, ⋄ for −1 and ○ for 2; Bolotin et al., + for −1 and □ for 2; Johnson and Christy, × for −1 and Δ for 2.
Fig. 10
Fig. 10 Platinum: −1(ω) and 2(ω) vs frequency. The data from Ref. 16 are Weaver et al., Δ for −1 and □ for 2.
Fig. 11
Fig. 11 Titanium: −1(ω) and 2(ω) vs frequency. The data from Ref. 17 are: Kirillova and Charikov, □ for both −1 and 2; Lynch et al., Δ for both; Johnson and Christy, ○ for both; Kirillova and Charikov, + for both; Bolotin et al., × for both.
Fig. 12
Fig. 12 Tungsten: −1(ω) and 2(ω) vs frequency. The solid line is the Drude model. The data from Ref. 18 are: Nomerovannaya et al., □ for both −1 and 2; Weaver et al., Δ for both.

Tables (40)

Tables Icon

TABLE 1 Al, ALUMINUME. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, Phys. Rev. B 22, 1612 (1980)

Tables Icon

Table 2 H. E. Bennett and J. M. Bennett, Optical Properties and Electronics Structure of Metals and Alloys, ed. F. Abeles (North–Holland, 1966), p. 175.

Tables Icon

Table 3 L. G. Schulz, J. Opt. Soc. Am. 44, 357 (1954) and 362 (1954).

Tables Icon

TABLE 2 Cu, COPPERL. G. Schulz, J. Opt. Am. 44, 357 and 362 (1954).

Tables Icon

Table 5 A. P. Lenham and D. M. Treherne, J. Opt. Soc. Am. 56, 683 (1966).

Tables Icon

Table 6 P. F. Robusto and Braunstein, Phys. Stat. Sol. (b) 107, 443 (1981).

Tables Icon

Table 7 H. J. Hagemann, W. Gudat, and C. Kunz, J. Opt. Soc. Am. 65, 742 (1975).

Tables Icon

Table 8 B. Dold and R. Mecke, Optik 22, 435 (1965).

Tables Icon

TABLE 3 Au, GOLDH. E. Bennett and J. M. Bennett, Optical Properties and Electronic Structure of Metals and Alloys edited by F. Abeles (North–Holland, Amsterdam, 1966), p. 175.

Tables Icon

Table 10 L. G. Schulz, J. Opt. Soc. Am. 44, 357 and 362 (1954).

Tables Icon

Table 11 G. P. Motulevich and A. A. Shubin, Soviet Phys. JETP 20, 560 (1965).

Tables Icon

Table 12 V. G. Padalka and I. N. Shklyarevskii, Opt. Spectr. U.S.S.R. 11, 285 (1961).

Tables Icon

Table 13 G. A. Bolotin, A. N. Voloshinskii, M. M. Neskov, A. V. Sokolov, and B. A. Charikov, Phys. Met. and Met. 13, 823 (1962).

Tables Icon

Table 14 G. Brandli and A. J. Sievers, Phy. Rev. B 5, 3550 (1972).

Tables Icon

Table 15 J. H. Weaver, C. Krafka, D. W. Lynch, and E. E. Koch (with C. G. Olson), Physics Data, Optical Properties of Metals, (Fach–Information Zentrum, Kalsrube, FOR, 1981).

Tables Icon

TABLE 4 Pb, LEADG. Brandli and A. J. Sievers, Phys. Rev. B 5, 3550 (1972).

Tables Icon

Table 17 A. I. Golovashkin and G. P. Motulevich, Soviet Physics JETP 26, 881 (1968)

Tables Icon

TABLE 5 Ag, SILVERH. E. Bennett and J. M. Bennett in Optical Properties and Electronic Structure of Metals and Alloys, edited by F. Abeles (North–Holland, Amsterdam, 1966), p. 175.

Tables Icon

Table 19 L. G. Schulz, J. Opt. Soc. Am. 44, p. 357 and 362 (1954).

Tables Icon

Table 20 H. J. Hageman, W. Gudat, and C. Kunz, J. Opt. Soc. Am. 65, 742 (1975).

Tables Icon

TABLE 6 Co, COBALTM. M. Kirillova and B. A. Charikov, Opt. Spectry. 17, 134 (1964).

Tables Icon

Table 22 P. B. Johnson and R. W. Christy, Phys. B 9, 5056 (1974).

Tables Icon

Table 23 J. H. Weaver, E. Colavita, D. W. Lynch and R. Rosei, Phys. Rev. B 19, 3850 (1979).

Tables Icon

TABLE 7 Fe, IronJ. H. Weaver, E. Colavita, D. W. Lynch, and R. Rosei, Phys. Rev. B 19, 3850 (1979).

Tables Icon

Table 25 G. A. Bolotin, M. M. Kirillova, and V. M. Mayevskiy, Phys. Met. Metall, 27(2) 31 (1969).

Tables Icon

TABLE 8 Ni, NICKELD. W. Lynch, R. Rosei and J. H. Weaver, Solid State Commun. 9, 2195 (1971).

Tables Icon

Table 27 B. Johnson and R. W. Christy, Phys. Rev. B 9, 5056 (1974).

Tables Icon

TABLE 9 Pd, PalladiumJ. H. Weaver and R. L. Bendow, Phys. Rev. B 12, 3509 (1975).

Tables Icon

Table 29 G. A. Bolotin, M. M. Kirilova, L. V. Nomerovannaya, and M. M. Noskov, Fiz. Metal. Metalloved 23, 463 (1967).

Tables Icon

Table 30 P. B. Johnson and R. W. Christy, Phys. Rev. B 9, 5056 (1974).

Tables Icon

TABLE 10 Pt, PlatinumJ. H. Weaver, Phys. Rev. B 11, 1416 (1975).

Tables Icon

Table 32 J. H. Weaver, D. W. Lynch, and C. G. Olson, Phys. Rev. B 10, 501 (1974).

Tables Icon

TABLE 11 Ti, TITANIUMM. M. Kirillova and B. A. Charikov, Opt. Spectry 17, 134 (1964).

Tables Icon

Table 34 D. W. Lynch, C. G. Olson, and J. H. Weaver, Phys. Rev. B 11, 3617 (1975).

Tables Icon

Table 35 P. B. Johnson and R. W. Christy, Phys. Rev. B 9, 5056 (1974).

Tables Icon

Table 36 M. M. Kirillova and B. A. Charikov, Phys. Met. 15, 138 (1963).

Tables Icon

Table 37 G. A. Bolotin, A. N. Voloshinskii, M. M. Neskov, A. V. Sokolov, and B. A. Charikov, Phys. Met. and Met. 13, 823 (1962).

Tables Icon

TABLE 12 W, TUNGSTENL. V. Nomerovannaya, M. M. Kirillova, and M. M. Noskov, Opt. Spectry. 17, 134 (1964).

Tables Icon

Table 39 J. H. Weaver, D. W. Lynch and C. G. Olson, Phys. Rev. B 12, 1293 (1975).

Tables Icon

Table 13 Optical Parameters Found using a Drude Model Fit of the Experimental Dielectric Functions for Six Metals for which the Dielectric Functions could be Fit; here ωf is the Frequency at which the Fit is Forced, and −1(0) is −1(ω) at dc; the Crossover Frequency Applies to −12.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

c 1 + i 2 n c 2 ( n + i k ) 2 .
c = ω p 2 ω 2 + i ω ω τ ,
1 = ω p 2 ω 2 + ω τ 2 ,
2 = ω p 2 ω τ ω 3 + ω ω τ 2 .
ω p ( cm 1 ) = 1 2 π c ( 4 π N e 2 m * ) 1 / 2 ,
ω τ ( cm 1 ) = 1 2 π c τ ,
1 ( 0 ) ( ω p ω τ ) 2 .
σ 0 = ω p 2 / ( 4 π ω τ )
σ 0 ( cm 1 ) = 1 / [ 2 π c ρ o ( s ) ] = ( 9 × 10 11 ) / [ 2 π c ρ 0 ( Ω cm ) ] .
Z ( ω ) R ( ω ) + i X ( ω ) = 4 π c ( 1 + i ) ( ω ω τ 2 ω p 2 ) 1 / 2 ( 1 + i ω ω τ ) 1 / 2 .
R ( ω ) = 4 π c ( ω ω τ 2 ω p 2 ) 1 / 2 [ ω ω τ + ( 1 + ω 2 ω τ 2 ) 1 / 2 ] 1 / 2 .
ω τ = ω 2 ( 1 1 ) .
ω p 2 = ( 1 1 ) ( ω 2 + ω τ 2 ) .
R ( ω ) Z 0 = ( ω ω τ 2 ω p 2 ) 1 / 2 .
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.