A. Ahmadivand, B. Gerislioglu, and N. Pala, “Optothermally controllable multiple high-order harmonics generation by Ge2Sb2Te5-mediated Fano clusters,” Opt. Mater. 84, 301–306 (2018).
[Crossref]
K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. H. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù, and J. Vuckovic, “Inverse-designed non-reciprocal pulse router for chip-based lidar,” Nat. Photonics 14, 369–374 (2020).
[Crossref]
B. Ai, C. Song, L. Bradley, and Y. Zhao, “Strong Fano resonance excited in an array of nanoparticle-in-ring nanostructures for dual plasmonic sensor applications,” J. Phys. Chem. C 122, 20935–20944 (2018).
[Crossref]
T. Lepetit, E. Akmansoy, J.-P. Ganne, and J.-M. Lourtioz, “Resonance continuum coupling in high-permittivity dielectric metamaterials,” Phys. Rev. B 82, 195307 (2010).
[Crossref]
M. J. Akram, F. Ghafoor, M. M. Khan, and F. Saif, “Control of Fano resonances and slow light using Bose-Einstein condensates in a nanocavity,” Phys. Rev. A 95, 023810 (2017).
[Crossref]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10, 2721–2726 (2010).
[Crossref]
K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. H. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù, and J. Vuckovic, “Inverse-designed non-reciprocal pulse router for chip-based lidar,” Nat. Photonics 14, 369–374 (2020).
[Crossref]
A. Krasnok, D. Baranov, H. Li, M.-A. Miri, F. Monticone, and A. Alù, “Anomalies in light scattering,” Adv. Opt. Photon. 11, 892–951 (2019).
[Crossref]
J. Lee, N. Nookala, J. S. Gomez-Diaz, M. Tymchenko, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Ultrathin second-harmonic metasurfaces with record-high nonlinear optical response,” Adv. Opt. Mater. 4, 664–670 (2016).
[Crossref]
F. Monticone and A. Alù, “Embedded photonic eigenvalues in 3D nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
[Crossref]
J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511, 65–69 (2014).
[Crossref]
J. Lee, N. Nookala, J. S. Gomez-Diaz, M. Tymchenko, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Ultrathin second-harmonic metasurfaces with record-high nonlinear optical response,” Adv. Opt. Mater. 4, 664–670 (2016).
[Crossref]
J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511, 65–69 (2014).
[Crossref]
K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. H. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù, and J. Vuckovic, “Inverse-designed non-reciprocal pulse router for chip-based lidar,” Nat. Photonics 14, 369–374 (2020).
[Crossref]
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]
F. B. Zarrabi, M. Bazgir, S. Ebrahimi, and A. S. Arezoomand, “Fano resonance for U-I nano-array independent to the polarization providing bio-sensing applications,” J. Electromagn. Waves. Appl. 31, 1444–1452 (2017).
[Crossref]
J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511, 65–69 (2014).
[Crossref]
J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]
T. J. Arruda, A. S. Martinez, F. A. Pinheiro, R. Bachelard, S. Slama, and P. W. Courteille, “Fano resonances in plasmonic core-shell particles and the Purcell effect,” in Fano Resonances in Optics and Microwaves, Series in Optical Sciences, E. Kamenetskii, A. Sadreev, and A. Miroshnichenko, eds. (Springer, 2018), pp. 445–472.
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]
V. Nadtochenko, N. Denisov, A. Aybush, F. Gostev, I. Shelaev, A. Titov, S. Umanskiy, and D. Cherepanov, “Ultrafast spectroscopy of Fano-like resonance between optical phonon and excitons in CdSe quantum dots: dependence of coherent vibrational wave-packet dynamics on pump fluence,” Nanomaterials 7, 371 (2017).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]
S. I. Azzam, A. V. Kildishev, R.-M. Ma, C.-Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J.-L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light Sci. Appl. 9, 90 (2020).
[Crossref]
T. J. Arruda, A. S. Martinez, F. A. Pinheiro, R. Bachelard, S. Slama, and P. W. Courteille, “Fano resonances in plasmonic core-shell particles and the Purcell effect,” in Fano Resonances in Optics and Microwaves, Series in Optical Sciences, E. Kamenetskii, A. Sadreev, and A. Miroshnichenko, eds. (Springer, 2018), pp. 445–472.
H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express 20, 20884–20893 (2012).
[Crossref]
M. Roussey, F. I. Baida, and M.-P. Bernal, “Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal,” J. Opt. Soc. Am. B 24, 1416–1422 (2007).
[Crossref]
C. Sciancalepore, B. B. Bakir, X. Letartre, J.-M. Fedeli, N. Olivier, D. Bordel, C. Seassal, P. Rojo-Romeo, P. Regreny, and P. Viktorovitch, “Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration,” J. Lightwave Technol. 29, 2015–2024 (2011).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
K. Bao, N. A. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A 100, 333–339 (2010).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]
R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]
K. V. Baryshnikova, D. A. Smirnova, B. S. Luk’yanchuk, and Y. S. Kivshar, “Optical anapoles: concepts and applications,” Adv. Opt. Mater. 7, 1801350 (2019).
[Crossref]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]
C. Bauer and H. Giessen, “Tailoring the plasmonic Fano resonance in metallic photonic crystals,” Nanophotonics 9, 523–531 (2020).
[Crossref]
F. B. Zarrabi, M. Bazgir, S. Ebrahimi, and A. S. Arezoomand, “Fano resonance for U-I nano-array independent to the polarization providing bio-sensing applications,” J. Electromagn. Waves. Appl. 31, 1444–1452 (2017).
[Crossref]
J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5, 161–167 (2010).
[Crossref]
H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[Crossref]
C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]
D. Bekele, Y. Yu, K. Yvind, and J. Mørk, “In-plane photonic crystal devices using Fano resonances,” Laser Photon. Rev. 13, 1900054 (2019).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
J. Lee, N. Nookala, J. S. Gomez-Diaz, M. Tymchenko, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Ultrathin second-harmonic metasurfaces with record-high nonlinear optical response,” Adv. Opt. Mater. 4, 664–670 (2016).
[Crossref]
N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16, 3607–3615 (2016).
[Crossref]
J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511, 65–69 (2014).
[Crossref]
M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref]
M. V. Rybin, P. V. Kapitanova, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, Yu. S. Kivshar, and M. F. Limonov, “Fano resonances in antennas: general control over radiation patterns,” Phys. Rev. B 88, 205106 (2013).
[Crossref]
D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[Crossref]
R. Berkovits, F. von Oppen, and J. W. Kantelhardt, “Discrete charging of a quantum dot strongly coupled to external leads,” Eur. Phys. Lett. 68, 699–705 (2004).
[Crossref]
H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express 20, 20884–20893 (2012).
[Crossref]
M. Roussey, F. I. Baida, and M.-P. Bernal, “Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal,” J. Opt. Soc. Am. B 24, 1416–1422 (2007).
[Crossref]
M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106, 181101 (2015).
[Crossref]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]
J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]
J. Lee, N. Nookala, J. S. Gomez-Diaz, M. Tymchenko, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Ultrathin second-harmonic metasurfaces with record-high nonlinear optical response,” Adv. Opt. Mater. 4, 664–670 (2016).
[Crossref]
J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511, 65–69 (2014).
[Crossref]
K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, and Y. Kivshar, “Subwavelength dielectric resonators for nonlinear nanophotonics,” Science 367, 288–292 (2020).
[Crossref]
A. A. Bogdanov, K. L. Koshelv, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, Z. F. Sadrieva, K. B. Samusev, Y. S. Kivshar, and M. F. Limonov, “Bound states in the continuum and Fano resonances in the strong mode coupling regime,” Adv. Photon. 1, 016001 (2019).
[Crossref]
M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017).
[Crossref]
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
C. Sciancalepore, B. B. Bakir, X. Letartre, J.-M. Fedeli, N. Olivier, D. Bordel, C. Seassal, P. Rojo-Romeo, P. Regreny, and P. Viktorovitch, “Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration,” J. Lightwave Technol. 29, 2015–2024 (2011).
[Crossref]
Y. Boretz, G. Ordonez, S. Tanaka, and T. Petrosky, “Optically tunable bound states in the continuum,” Phys. Rev. A 90, 023853 (2014).
[Crossref]
K. L. Tsakmakidis, O. Hess, R. W. Boyd, and X. Zhang, “Ultraslow waves on the nanoscale,” Science 358, eaan5196 (2017).
[Crossref]
R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
[Crossref]
A. Kristensen, J. W. K. Yang, S. I. Bozhevolnyi, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2017).
[Crossref]
B. Ai, C. Song, L. Bradley, and Y. Zhao, “Strong Fano resonance excited in an array of nanoparticle-in-ring nanostructures for dual plasmonic sensor applications,” J. Phys. Chem. C 122, 20935–20944 (2018).
[Crossref]
P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13, 471–475 (2014).
[Crossref]
G. Veronis, Z. Yu, S. E. Kocabas, D. A. B. Miller, M. L. Brongersma, and S. H. Fang, “Metal–dielectric–metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chin. Opt. Lett. 7, 302–308 (2009).
[Crossref]
L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref]
S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E 74, 046603 (2006).
[Crossref]
N. L. Kazanskiy, S. N. Khonina, and M. A. Butt, “Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: a brief review,” Phys. E 117, 113798 (2020).
[Crossref]
D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, and S.-D. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119, 4252–4260 (2015).
[Crossref]
S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, D. A. Smirnova, L. Wang, H. H. Tan, C. Jagadish, D. N. Neshev, and Y. S. Kivshar, “Nonlinear optical magnetism revealed by second-harmonic generation in nanoantennas,” Nano Lett. 17, 3914–3918 (2017).
[Crossref]
J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17, 1219–1225 (2017).
[Crossref]
G. Q. Lin, H. Yang, Y. Deng, D. Wu, X. Zhou, Y. Wu, G. Cao, J. Chen, W. Sun, and R. Zhou, “Ultra-compact high-sensitivity plasmonic sensor based on Fano resonance with symmetry breaking ring cavity,” Opt. Express 27, 33358–33367 (2019).
[Crossref]
V. G. Hadjiev, X. Zhou, T. Strohm, M. Cardona, Q. M. Lin, and C. W. Chu, “Strong superconductivity-induced phonon self-energy effects in HgBa2Ca3Cu4O10+δ,” Phys. Rev. B 58, 1043 (1998).
[Crossref]
V. F. Gili, L. Carletti, A. Locatelli, D. Rocco, M. Finazzi, L. Ghirardini, I. Favero, C. Gomez, A. Lemaître, M. Celebrano, C. De Angelis, and G. Leo, “Monolithic AlGaAs second-harmonic nanoantennas,” Opt. Express 24, 15965–15971 (2016).
[Crossref]
V. F. Gili, L. Carletti, A. Locatelli, D. Rocco, M. Finazzi, L. Ghirardini, I. Favero, C. Gomez, A. Lemaître, M. Celebrano, C. De Angelis, and G. Leo, “Monolithic AlGaAs second-harmonic nanoantennas,” Opt. Express 24, 15965–15971 (2016).
[Crossref]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]
O. Černotík, A. Dantan, and C. Genes, “Cavity quantum electrodynamics with frequency-dependent reflectors,” Phys. Rev. Lett. 122, 243601 (2019).
[Crossref]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]
W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref]
C. Jiang, L. Jiang, H. Yu, Y. Cui, X. Li, and G. Chen, “Fano resonance and slow light in hybrid optomechanics mediated by a two-level system,” Phys. Rev. A 96, 053821 (2017).
[Crossref]
H.-J. Chen, “Fano resonance induced fast to slow light in a hybrid semiconductor quantum dot and metal nanoparticle system,” Laser Phys. Lett. 17, 025201 (2020).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]
J. Chen, J. Li, X. Liu, S. Rohimah, H. Tian, and D. Qi, “Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics,” Opt. Commun. 482, 126563 (2021).
[Crossref]
J. Xiang, J. Chen, S. Lan, and A. E. Miroshnichenko, “Nanoscale optical display and sensing based on the modification of Fano lineshape,” Adv. Opt. Mater. 8, 2000489 (2020).
[Crossref]
G. Q. Lin, H. Yang, Y. Deng, D. Wu, X. Zhou, Y. Wu, G. Cao, J. Chen, W. Sun, and R. Zhou, “Ultra-compact high-sensitivity plasmonic sensor based on Fano resonance with symmetry breaking ring cavity,” Opt. Express 27, 33358–33367 (2019).
[Crossref]
J. Chen, J. Yuan, Q. Zhang, H. Ge, C. Tang, Y. Liu, and B. Guo, “Dielectric waveguide-enhanced localized surface plasmon resonance refractive index sensing,” Opt. Mater. Express 8, 342–347 (2018).
[Crossref]
S. Hu, D. Liu, H. Lin, J. Chen, Y. Yi, and H. Yang, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121, 123103 (2017).
[Crossref]
J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22, 14688–14695 (2014).
[Crossref]
D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, and S.-D. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119, 4252–4260 (2015).
[Crossref]
M. Chen, Z. Xiao, X. Lu, F. Lv, and Y. Zhou, “Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial,” Carbon 159, 273–282 (2020).
[Crossref]
J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511, 65–69 (2014).
[Crossref]
Z. Liu, Y. Xu, C.-Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-enhanced circular dichroism in deformable stereo metasurfaces,” Adv. Mater. 32, 1907077 (2020).
[Crossref]
B. Yang, W. Liu, Z. Li, H. Cheng, S. Chen, and J. Tian, “Polarization-sensitive structural colors with Hue-and-saturation tuning based on all-dielectric nanopixels,” Adv. Opt. Mater. 6, 1701009 (2018).
[Crossref]
G. Zheng, X. Zou, Y. Chen, L. Xu, and W. Rao, “Fano resonance in graphene-MoS2 heterostructure-based surface plasmon resonance biosensor and its potential applications,” Opt. Mater. 66, 171–178 (2017).
[Crossref]
Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]
Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mørk, “Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry,” Laser Photon. Rev. 9, 241–247 (2015).
[Crossref]
Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]
S. Zhan, Y. Peng, Z. He, B. Li, Z. Chen, H. Xu, and H. Li, “Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide,” Sci. Rep. 6, 22428 (2016).
[Crossref]
J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22, 14688–14695 (2014).
[Crossref]
D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, and S.-D. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119, 4252–4260 (2015).
[Crossref]
B. Yang, W. Liu, Z. Li, H. Cheng, S. Chen, and J. Tian, “Polarization-sensitive structural colors with Hue-and-saturation tuning based on all-dielectric nanopixels,” Adv. Opt. Mater. 6, 1701009 (2018).
[Crossref]
Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices,” Nano Energy 68, 104280 (2020).
[Crossref]
Z. H. Han, W. N. Han, F. R. Liu, Z. Han, Y. P. Yuan, and Z. C. Cheng, “Ultrafast temporal-spatial dynamics of amorphous-to-crystalline phase transition in Ge2Sb2Te5 thin film triggered by multiple femtosecond laser pulses irradiation,” Nanotechnology 31, 115706 (2020).
[Crossref]
V. Nadtochenko, N. Denisov, A. Aybush, F. Gostev, I. Shelaev, A. Titov, S. Umanskiy, and D. Cherepanov, “Ultrafast spectroscopy of Fano-like resonance between optical phonon and excitons in CdSe quantum dots: dependence of coherent vibrational wave-packet dynamics on pump fluence,” Nanomaterials 7, 371 (2017).
[Crossref]
M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106, 181101 (2015).
[Crossref]
A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D.-Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances,” Nano Lett. 16, 4857–4861 (2016).
[Crossref]
K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, and Y. Kivshar, “Subwavelength dielectric resonators for nonlinear nanophotonics,” Science 367, 288–292 (2020).
[Crossref]
B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]
A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D.-Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances,” Nano Lett. 16, 4857–4861 (2016).
[Crossref]
V. G. Hadjiev, X. Zhou, T. Strohm, M. Cardona, Q. M. Lin, and C. W. Chu, “Strong superconductivity-induced phonon self-energy effects in HgBa2Ca3Cu4O10+δ,” Phys. Rev. B 58, 1043 (1998).
[Crossref]
C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]
B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]
J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[Crossref]
W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]
U. Fano, G. Pupillo, A. Zannoni, and C. W. Clark, “On the absorption spectrum of noble gases at the arc spectrum limit,” J. Res. Natl. Inst. Stand. Technol. 110, 583–587 (2005).
[Crossref]
G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550K at the wavelength of 1523nm,” Appl. Phys. Lett. 74, 3338–3340 (1999).
[Crossref]
H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express 20, 20884–20893 (2012).
[Crossref]
J. Zhu, G. Wang, F. Jiang, Y. Qin, and H. Cong, “Temperature sensor of MoS2 based on hybrid plasmonic waveguides,” Plasmonics 14, 1863–1870 (2019).
[Crossref]
M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106, 181101 (2015).
[Crossref]
J.-P. Connerade and A. M. Lane, “Interacting resonances in atomic spectroscopy,” Rep. Prog. Phys. 51, 1439–1478 (1988).
[Crossref]
J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17, 1219–1225 (2017).
[Crossref]
K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. H. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù, and J. Vuckovic, “Inverse-designed non-reciprocal pulse router for chip-based lidar,” Nat. Photonics 14, 369–374 (2020).
[Crossref]
H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express 20, 20884–20893 (2012).
[Crossref]
T. J. Arruda, A. S. Martinez, F. A. Pinheiro, R. Bachelard, S. Slama, and P. W. Courteille, “Fano resonances in plasmonic core-shell particles and the Purcell effect,” in Fano Resonances in Optics and Microwaves, Series in Optical Sciences, E. Kamenetskii, A. Sadreev, and A. Miroshnichenko, eds. (Springer, 2018), pp. 445–472.
C. De-Eknamkul, X. Zhang, M.-Q. Zhao, W. Huang, R. Liu, A. T. C. Johnson, and E. Cubukcu, “MoS2-enabled dual-mode optoelectronic biosensor using a water soluble variant of mu-opioid receptor for opioid peptide detection,” 2D Mater. 7, 014004 (2020).
[Crossref]
H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10, 709–714 (2016).
[Crossref]
A. Cui, Z. Liu, J. Li, T. H. Shen, X. Xia, Z. Li, Z. Gong, H. Li, B. Wang, J. Li, H. Yang, W. Li, and C. Gu, “Directly patterned substrate-free plasmonic ‘nanograter’ structures with unusual Fano resonances,” Light Sci. Appl. 4, e308 (2015).
[Crossref]
S. Zhang, S.-J. Tang, S. Feng, Y.-F. Xiao, W. Cui, X. Wang, W. Sun, J. Ye, P. Han, X. Zhang, and Y. Zhang, “High-Q polymer microcavities integrated on a multicore fiber facet for vapor sensing,” Adv. Opt. Mater. 7, 1900602 (2019).
[Crossref]
Y. Wen, Y. Sun, C. Deng, L. Huang, G. Hu, B. Yun, R. Zhang, and Y. Cui, “High sensitivity and FOM refractive index sensing based on Fano resonance in all-grating racetrack resonators,” Opt. Commun. 446, 141–146 (2019).
[Crossref]
C. Jiang, L. Jiang, H. Yu, Y. Cui, X. Li, and G. Chen, “Fano resonance and slow light in hybrid optomechanics mediated by a two-level system,” Phys. Rev. A 96, 053821 (2017).
[Crossref]
B. Yun, R. Zhang, G. Hu, and Y. Cui, “Ultra sharp Fano resonances induced by coupling between plasmonic stub and circular cavity resonators,” Plasmonics 11, 1157–1162 (2016).
[Crossref]
H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]
N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16, 3607–3615 (2016).
[Crossref]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]
O. Černotík, A. Dantan, and C. Genes, “Cavity quantum electrodynamics with frequency-dependent reflectors,” Phys. Rev. Lett. 122, 243601 (2019).
[Crossref]
Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[Crossref]
V. F. Gili, L. Carletti, A. Locatelli, D. Rocco, M. Finazzi, L. Ghirardini, I. Favero, C. Gomez, A. Lemaître, M. Celebrano, C. De Angelis, and G. Leo, “Monolithic AlGaAs second-harmonic nanoantennas,” Opt. Express 24, 15965–15971 (2016).
[Crossref]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]
L. H. Guessi, Y. Marques, R. S. Machado, K. Kristinsson, L. S. Ricco, I. A. Shelykh, M. S. Figueira, M. De Souza, and A. C. Seridonio, “Quantum phase transition triggering magnetic bound states in the continuum in graphene,” Phys. Rev. B 92, 245107 (2015).
[Crossref]
L. H. Guessi, R. S. Machado, Y. Marques, L. S. Ricco, K. Kristinsson, M. Yoshida, I. A. Shelykh, M. De Souza, and A. C. Seridonio, “Catching the bound states in the continuum of a phantom atom in graphene,” Phys. Rev. B 92, 045409 (2015).
[Crossref]
C. De-Eknamkul, X. Zhang, M.-Q. Zhao, W. Huang, R. Liu, A. T. C. Johnson, and E. Cubukcu, “MoS2-enabled dual-mode optoelectronic biosensor using a water soluble variant of mu-opioid receptor for opioid peptide detection,” 2D Mater. 7, 014004 (2020).
[Crossref]
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]
G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550K at the wavelength of 1523nm,” Appl. Phys. Lett. 74, 3338–3340 (1999).
[Crossref]
J. Lee, N. Nookala, J. S. Gomez-Diaz, M. Tymchenko, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Ultrathin second-harmonic metasurfaces with record-high nonlinear optical response,” Adv. Opt. Mater. 4, 664–670 (2016).
[Crossref]
J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511, 65–69 (2014).
[Crossref]
Y. Wen, Y. Sun, C. Deng, L. Huang, G. Hu, B. Yun, R. Zhang, and Y. Cui, “High sensitivity and FOM refractive index sensing based on Fano resonance in all-grating racetrack resonators,” Opt. Commun. 446, 141–146 (2019).
[Crossref]
G. Q. Lin, H. Yang, Y. Deng, D. Wu, X. Zhou, Y. Wu, G. Cao, J. Chen, W. Sun, and R. Zhou, “Ultra-compact high-sensitivity plasmonic sensor based on Fano resonance with symmetry breaking ring cavity,” Opt. Express 27, 33358–33367 (2019).
[Crossref]
V. Nadtochenko, N. Denisov, A. Aybush, F. Gostev, I. Shelaev, A. Titov, S. Umanskiy, and D. Cherepanov, “Ultrafast spectroscopy of Fano-like resonance between optical phonon and excitons in CdSe quantum dots: dependence of coherent vibrational wave-packet dynamics on pump fluence,” Nanomaterials 7, 371 (2017).
[Crossref]
E. V. Denning, J. Iles-Smith, and J. Mørk, “Quantum light-matter interaction and controlled phonon scattering in a photonic Fano cavity,” Phys. Rev. B 100, 214306 (2019).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]
F. Remacle, M. Munster, V. B. Pavlov-Verevkin, and M. Desouter-Lecomte, “Trapping in competitive decay of degenerate states,” Phys. Lett. A 145, 265–268 (1990).
[Crossref]
A. Z. Devdariani, V. N. Ostrovskii, and Y. N. Sebyakin, “Crossing of quasistationary levels,” Sov. Phys. JETP 44, 477 (1976).
J. Diao, B. Han, J. Yin, X. Li, T. Lang, and Z. Hong, “Analogue of electromagnetically induced transparency in an S-shaped all-dielectric metasurface,” IEEE Photon. J. 11, 4601110 (2019).
[Crossref]
J. Li, R. Yu, J. Liu, C. Ding, and Y. Wu, “Fano line-shape control and superluminal light using cavity quantum electrodynamics with a partially transmitting element,” Phys. Rev. A 93, 053814 (2016).
[Crossref]
H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002).
[Crossref]
Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406–410 (2007).
[Crossref]
M. B. Doost, W. Langbein, and E. A. Muljarov, “Resonant-state expansion applied to three-dimensional open optical systems,” Phys. Rev. A 90, 013834 (2014).
[Crossref]
Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, and N. X. Fang, “Nano-Kirigami with giant optical chirality,” Sci. Adv. 4, eaat4436 (2018).
[Crossref]
J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]
K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. H. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù, and J. Vuckovic, “Inverse-designed non-reciprocal pulse router for chip-based lidar,” Nat. Photonics 14, 369–374 (2020).
[Crossref]
N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16, 3607–3615 (2016).
[Crossref]
C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]
F. B. Zarrabi, M. Bazgir, S. Ebrahimi, and A. S. Arezoomand, “Fano resonance for U-I nano-array independent to the polarization providing bio-sensing applications,” J. Electromagn. Waves. Appl. 31, 1444–1452 (2017).
[Crossref]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
M. ElKabbash, T. Letsou, S. A. Jalil, N. Hoffman, J. Zhang, J. Rutledge, A. R. Lininger, C.-H. Fann, M. Hinczewski, G. Strangi, and C. Guo, “Fano-resonant ultrathin film optical coatings,” Nat. Nanotechnol. 16, 440–446 (2021).
[Crossref]
S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision for the road ahead,” Science 362, eaam9288 (2018).
[Crossref]
I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149–158 (2017).
[Crossref]
H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[Crossref]
N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16, 3607–3615 (2016).
[Crossref]
P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13, 471–475 (2014).
[Crossref]
K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. H. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù, and J. Vuckovic, “Inverse-designed non-reciprocal pulse router for chip-based lidar,” Nat. Photonics 14, 369–374 (2020).
[Crossref]
P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13, 471–475 (2014).
[Crossref]
W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]
J.-T. Shen and S. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95, 213001 (2005).
[Crossref]
G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[Crossref]
W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004).
[Crossref]
M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[Crossref]
S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]
S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]
W. Zhu, Y. Fan, C. Li, R. Yang, S. Yan, Q. Fu, F. Zhang, C. Gu, and J. Li, “Realization of a near-infrared active Fano-resonant asymmetric metasurface by precisely controlling the phase transition of Ge2Sb2Te5,” Nanoscale 12, 8758–8767 (2020).
[Crossref]
Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, and N. X. Fang, “Nano-Kirigami with giant optical chirality,” Sci. Adv. 4, eaat4436 (2018).
[Crossref]
M. ElKabbash, T. Letsou, S. A. Jalil, N. Hoffman, J. Zhang, J. Rutledge, A. R. Lininger, C.-H. Fann, M. Hinczewski, G. Strangi, and C. Guo, “Fano-resonant ultrathin film optical coatings,” Nat. Nanotechnol. 16, 440–446 (2021).
[Crossref]
U. Fano, G. Pupillo, A. Zannoni, and C. W. Clark, “On the absorption spectrum of noble gases at the arc spectrum limit,” J. Res. Natl. Inst. Stand. Technol. 110, 583–587 (2005).
[Crossref]
U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]
U. Fano, “Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d’arco,” Nuovo Cimento 12, 154–161 (1935).
[Crossref]
V. F. Gili, L. Carletti, A. Locatelli, D. Rocco, M. Finazzi, L. Ghirardini, I. Favero, C. Gomez, A. Lemaître, M. Celebrano, C. De Angelis, and G. Leo, “Monolithic AlGaAs second-harmonic nanoantennas,” Opt. Express 24, 15965–15971 (2016).
[Crossref]
C. Sciancalepore, B. B. Bakir, X. Letartre, J.-M. Fedeli, N. Olivier, D. Bordel, C. Seassal, P. Rojo-Romeo, P. Regreny, and P. Viktorovitch, “Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration,” J. Lightwave Technol. 29, 2015–2024 (2011).
[Crossref]
A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D.-Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances,” Nano Lett. 16, 4857–4861 (2016).
[Crossref]
C. Zheng, T. Jia, H. Zhao, S. Zhang, D. Feng, and Z. Sun, “Low threshold tunable spaser based on multipolar Fano resonances in disk–ring plasmonic nanostructures,” J. Phys. D 49, 015101 (2015).
[Crossref]
Y. Y. Huo, T. Q. Jia, Y. Zhang, H. Zhao, S. A. Zhang, D. H. Feng, and Z. R. Sun, “Spaser based on Fano resonance in a rod and concentric square ring-disk nanostructure,” Appl. Phys. Lett. 104, 113104 (2014).
[Crossref]
S. Zhang, S.-J. Tang, S. Feng, Y.-F. Xiao, W. Cui, X. Wang, W. Sun, J. Ye, P. Han, X. Zhang, and Y. Zhang, “High-Q polymer microcavities integrated on a multicore fiber facet for vapor sensing,” Adv. Opt. Mater. 7, 1900602 (2019).
[Crossref]
S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107 (1990).
[Crossref]
L. H. Guessi, Y. Marques, R. S. Machado, K. Kristinsson, L. S. Ricco, I. A. Shelykh, M. S. Figueira, M. De Souza, and A. C. Seridonio, “Quantum phase transition triggering magnetic bound states in the continuum in graphene,” Phys. Rev. B 92, 245107 (2015).
[Crossref]
M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref]
M. V. Rybin, P. V. Kapitanova, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, Yu. S. Kivshar, and M. F. Limonov, “Fano resonances in antennas: general control over radiation patterns,” Phys. Rev. B 88, 205106 (2013).
[Crossref]
V. F. Gili, L. Carletti, A. Locatelli, D. Rocco, M. Finazzi, L. Ghirardini, I. Favero, C. Gomez, A. Lemaître, M. Celebrano, C. De Angelis, and G. Leo, “Monolithic AlGaAs second-harmonic nanoantennas,” Opt. Express 24, 15965–15971 (2016).
[Crossref]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]
A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]
A. E. Miroshnichenko, S. Flach, A. V. Gorbach, B. S. Luk’yanchuk, Y. S. Kivshar, and M. I. Tribelsky, “Fano resonances: a discovery that was not made 100 years ago,” Opt. Photon. News 19(12), 48 (2008).
[Crossref]
N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]
F. Zangeneh-Nejad and R. Fleury, “Topological Fano resonances,” Phys. Rev. Lett. 122, 014301 (2019).
[Crossref]
C. Forestiere and G. Miano, “On the nanoparticle resonances in the full-retarded regime,” J. Opt. 19, 075601 (2017).
[Crossref]
C. Forestiere, G. Miano, M. Pascale, and R. Tricarico, “A full-retarded spectral technique for the analysis of Fano resonances in a dielectric nanosphere,” in Fano Resonances in Optics and Microwaves, Series in Optical Sciences, E. Kamenetskii, A. Sadreev, and A. Miroshnichenko, eds. (Springer, 2018), pp. 185–218.
R. M. Foster, “A reactance theorem,” Bell Syst. Tech. J. 3, 259–267 (1924).
[Crossref]
M. Fox, Quantum Optics: An Introduction (Oxford University, 2006).
H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32, 3231–3242 (1985).
[Crossref]
K.-H. Gu, X.-B. Yan, Y. Zhang, C.-B. Fu, Y.-M. Liu, X. Wang, and J.-H. Wu, “Tunable slow and fast light in an atom-assisted optomechanical system,” Opt. Commun. 338, 569–573 (2015).
[Crossref]
W. Zhu, Y. Fan, C. Li, R. Yang, S. Yan, Q. Fu, F. Zhang, C. Gu, and J. Li, “Realization of a near-infrared active Fano-resonant asymmetric metasurface by precisely controlling the phase transition of Ge2Sb2Te5,” Nanoscale 12, 8758–8767 (2020).
[Crossref]
T. Lepetit, E. Akmansoy, J.-P. Ganne, and J.-M. Lourtioz, “Resonance continuum coupling in high-permittivity dielectric metamaterials,” Phys. Rev. B 82, 195307 (2010).
[Crossref]
Z. Gao, L. Wu, F. Gao, Y. Luo, and B. Zhang, “Spoof plasmonics: from metamaterial concept to topological description,” Adv. Mater. 30, 1706683 (2018).
[Crossref]
Z. Gao, L. Wu, F. Gao, Y. Luo, and B. Zhang, “Spoof plasmonics: from metamaterial concept to topological description,” Adv. Mater. 30, 1706683 (2018).
[Crossref]
R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).
[Crossref]
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]
O. Černotík, A. Dantan, and C. Genes, “Cavity quantum electrodynamics with frequency-dependent reflectors,” Phys. Rev. Lett. 122, 243601 (2019).
[Crossref]
A. Ahmadivand, B. Gerislioglu, and N. Pala, “Optothermally controllable multiple high-order harmonics generation by Ge2Sb2Te5-mediated Fano clusters,” Opt. Mater. 84, 301–306 (2018).
[Crossref]
M. J. Akram, F. Ghafoor, M. M. Khan, and F. Saif, “Control of Fano resonances and slow light using Bose-Einstein condensates in a nanocavity,” Phys. Rev. A 95, 023810 (2017).
[Crossref]
V. F. Gili, L. Carletti, A. Locatelli, D. Rocco, M. Finazzi, L. Ghirardini, I. Favero, C. Gomez, A. Lemaître, M. Celebrano, C. De Angelis, and G. Leo, “Monolithic AlGaAs second-harmonic nanoantennas,” Opt. Express 24, 15965–15971 (2016).
[Crossref]
Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]
C. Bauer and H. Giessen, “Tailoring the plasmonic Fano resonance in metallic photonic crystals,” Nanophotonics 9, 523–531 (2020).
[Crossref]
A. Tittl, C. Kremers, J. Dorfmüller, D. N. Chigrin, and H. Giessen, “Spectral shifts in optical nanoantenna-enhanced hydrogen sensors,” Opt. Mater. Express 2, 111–118 (2012).
[Crossref]
M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10, 2721–2726 (2010).
[Crossref]
B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]
N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]
V. F. Gili, L. Carletti, A. Locatelli, D. Rocco, M. Finazzi, L. Ghirardini, I. Favero, C. Gomez, A. Lemaître, M. Celebrano, C. De Angelis, and G. Leo, “Monolithic AlGaAs second-harmonic nanoantennas,” Opt. Express 24, 15965–15971 (2016).
[Crossref]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]
A. A. Bogdanov, K. L. Koshelv, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, Z. F. Sadrieva, K. B. Samusev, Y. S. Kivshar, and M. F. Limonov, “Bound states in the continuum and Fano resonances in the strong mode coupling regime,” Adv. Photon. 1, 016001 (2019).
[Crossref]
V. F. Gili, L. Carletti, A. Locatelli, D. Rocco, M. Finazzi, L. Ghirardini, I. Favero, C. Gomez, A. Lemaître, M. Celebrano, C. De Angelis, and G. Leo, “Monolithic AlGaAs second-harmonic nanoantennas,” Opt. Express 24, 15965–15971 (2016).
[Crossref]
J. Lee, N. Nookala, J. S. Gomez-Diaz, M. Tymchenko, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Ultrathin second-harmonic metasurfaces with record-high nonlinear optical response,” Adv. Opt. Mater. 4, 664–670 (2016).
[Crossref]
A. Cui, Z. Liu, J. Li, T. H. Shen, X. Xia, Z. Li, Z. Gong, H. Li, B. Wang, J. Li, H. Yang, W. Li, and C. Gu, “Directly patterned substrate-free plasmonic ‘nanograter’ structures with unusual Fano resonances,” Light Sci. Appl. 4, e308 (2015).
[Crossref]
A. E. Miroshnichenko, S. Flach, A. V. Gorbach, B. S. Luk’yanchuk, Y. S. Kivshar, and M. I. Tribelsky, “Fano resonances: a discovery that was not made 100 years ago,” Opt. Photon. News 19(12), 48 (2008).
[Crossref]
O. S. Latcham, Y. I. Gusieva, A. V. Shytov, O. Y. Gorobets, and V. V. Kruglyak, “Controlling acoustic waves using magnetoelastic Fano resonances,” Appl. Phys. Lett. 115, 082403 (2019).
[Crossref]
V. Nadtochenko, N. Denisov, A. Aybush, F. Gostev, I. Shelaev, A. Titov, S. Umanskiy, and D. Cherepanov, “Ultrafast spectroscopy of Fano-like resonance between optical phonon and excitons in CdSe quantum dots: dependence of coherent vibrational wave-packet dynamics on pump fluence,” Nanomaterials 7, 371 (2017).
[Crossref]
P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[Crossref]
J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17, 1219–1225 (2017).
[Crossref]
P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[Crossref]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]
W. Zhu, Y. Fan, C. Li, R. Yang, S. Yan, Q. Fu, F. Zhang, C. Gu, and J. Li, “Realization of a near-infrared active Fano-resonant asymmetric metasurface by precisely controlling the phase transition of Ge2Sb2Te5,” Nanoscale 12, 8758–8767 (2020).
[Crossref]
Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z.-Y. Li, “Fano resonance Rabi splitting of surface plasmons,” Sci. Rep. 7, 8010 (2017).
[Crossref]
Z. Liu, Z. Liu, J. Li, W. Li, J. Li, C. Gu, and Z.-Y. Li, “3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials,” Sci. Rep. 6, 27817 (2016).
[Crossref]
A. Cui, Z. Liu, J. Li, T. H. Shen, X. Xia, Z. Li, Z. Gong, H. Li, B. Wang, J. Li, H. Yang, W. Li, and C. Gu, “Directly patterned substrate-free plasmonic ‘nanograter’ structures with unusual Fano resonances,” Light Sci. Appl. 4, e308 (2015).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]
K.-H. Gu, X.-B. Yan, Y. Zhang, C.-B. Fu, Y.-M. Liu, X. Wang, and J.-H. Wu, “Tunable slow and fast light in an atom-assisted optomechanical system,” Opt. Commun. 338, 569–573 (2015).
[Crossref]
X. Luo, D. Tsai, M. Gu, and M. Hong, “Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion,” Chem. Soc. Rev. 48, 2458–2494 (2019).
[Crossref]
L. H. Guessi, Y. Marques, R. S. Machado, K. Kristinsson, L. S. Ricco, I. A. Shelykh, M. S. Figueira, M. De Souza, and A. C. Seridonio, “Quantum phase transition triggering magnetic bound states in the continuum in graphene,” Phys. Rev. B 92, 245107 (2015).
[Crossref]
L. H. Guessi, R. S. Machado, Y. Marques, L. S. Ricco, K. Kristinsson, M. Yoshida, I. A. Shelykh, M. De Souza, and A. C. Seridonio, “Catching the bound states in the continuum of a phantom atom in graphene,” Phys. Rev. B 92, 045409 (2015).
[Crossref]
M. ElKabbash, T. Letsou, S. A. Jalil, N. Hoffman, J. Zhang, J. Rutledge, A. R. Lininger, C.-H. Fann, M. Hinczewski, G. Strangi, and C. Guo, “Fano-resonant ultrathin film optical coatings,” Nat. Nanotechnol. 16, 440–446 (2021).
[Crossref]
S. K. Srivastava and B. D. Gupta, “Influence of ions on the surface plasmon resonance spectrum of a fiber optic refractive index sensor,” Sens. Actuators B Chem. 156, 559–562 (2011).
[Crossref]
B. Gurlek, V. Sandoghdar, and D. Martín-Cano, “Manipulation of quenching in nanoantenna-emitter systems enabled by external detuned cavities: a path to enhance strong-coupling,” ACS Photon. 5, 456–461 (2018).
[Crossref]
O. S. Latcham, Y. I. Gusieva, A. V. Shytov, O. Y. Gorobets, and V. V. Kruglyak, “Controlling acoustic waves using magnetoelastic Fano resonances,” Appl. Phys. Lett. 115, 082403 (2019).
[Crossref]
H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express 20, 20884–20893 (2012).
[Crossref]
V. G. Hadjiev, X. Zhou, T. Strohm, M. Cardona, Q. M. Lin, and C. W. Chu, “Strong superconductivity-induced phonon self-energy effects in HgBa2Ca3Cu4O10+δ,” Phys. Rev. B 58, 1043 (1998).
[Crossref]
A. Kristensen, J. W. K. Yang, S. I. Bozhevolnyi, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2017).
[Crossref]
Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[Crossref]
L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref]
B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]
J. Diao, B. Han, J. Yin, X. Li, T. Lang, and Z. Hong, “Analogue of electromagnetically induced transparency in an S-shaped all-dielectric metasurface,” IEEE Photon. J. 11, 4601110 (2019).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]
S. Zhang, S.-J. Tang, S. Feng, Y.-F. Xiao, W. Cui, X. Wang, W. Sun, J. Ye, P. Han, X. Zhang, and Y. Zhang, “High-Q polymer microcavities integrated on a multicore fiber facet for vapor sensing,” Adv. Opt. Mater. 7, 1900602 (2019).
[Crossref]
Z. H. Han, W. N. Han, F. R. Liu, Z. Han, Y. P. Yuan, and Z. C. Cheng, “Ultrafast temporal-spatial dynamics of amorphous-to-crystalline phase transition in Ge2Sb2Te5 thin film triggered by multiple femtosecond laser pulses irradiation,” Nanotechnology 31, 115706 (2020).
[Crossref]
Z. H. Han, W. N. Han, F. R. Liu, Z. Han, Y. P. Yuan, and Z. C. Cheng, “Ultrafast temporal-spatial dynamics of amorphous-to-crystalline phase transition in Ge2Sb2Te5 thin film triggered by multiple femtosecond laser pulses irradiation,” Nanotechnology 31, 115706 (2020).
[Crossref]
Z. H. Han, W. N. Han, F. R. Liu, Z. Han, Y. P. Yuan, and Z. C. Cheng, “Ultrafast temporal-spatial dynamics of amorphous-to-crystalline phase transition in Ge2Sb2Te5 thin film triggered by multiple femtosecond laser pulses irradiation,” Nanotechnology 31, 115706 (2020).
[Crossref]
S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision for the road ahead,” Science 362, eaam9288 (2018).
[Crossref]
F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[Crossref]
Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices,” Nano Energy 68, 104280 (2020).
[Crossref]
S. Pang, Y. Huo, Y. Xie, and L. Hao, “Fano resonance in MIM waveguide structure with oblique rectangular cavity and its application in sensor,” Opt. Commun. 381, 409–413 (2016).
[Crossref]
P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[Crossref]
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]
S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]
S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107 (1990).
[Crossref]
C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]
L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]
S. Zhan, Y. Peng, Z. He, B. Li, Z. Chen, H. Xu, and H. Li, “Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide,” Sci. Rep. 6, 22428 (2016).
[Crossref]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]
M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10, 2721–2726 (2010).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
K. L. Tsakmakidis, O. Hess, R. W. Boyd, and X. Zhang, “Ultraslow waves on the nanoscale,” Science 358, eaan5196 (2017).
[Crossref]
K. B. Joanesarson, J. Iles-Smith, M. Heuck, and J. Mørk, “Few-photon transport in Fano-resonance waveguide geometries,” Phys. Rev. A 101, 063809 (2020).
[Crossref]
Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. Jan Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
M. ElKabbash, T. Letsou, S. A. Jalil, N. Hoffman, J. Zhang, J. Rutledge, A. R. Lininger, C.-H. Fann, M. Hinczewski, G. Strangi, and C. Guo, “Fano-resonant ultrathin film optical coatings,” Nat. Nanotechnol. 16, 440–446 (2021).
[Crossref]
Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. 524, 637–662 (2012).
[Crossref]
M. ElKabbash, T. Letsou, S. A. Jalil, N. Hoffman, J. Zhang, J. Rutledge, A. R. Lininger, C.-H. Fann, M. Hinczewski, G. Strangi, and C. Guo, “Fano-resonant ultrathin film optical coatings,” Nat. Nanotechnol. 16, 440–446 (2021).
[Crossref]
J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5, 161–167 (2010).
[Crossref]
C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]
X. Luo, D. Tsai, M. Gu, and M. Hong, “Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion,” Chem. Soc. Rev. 48, 2458–2494 (2019).
[Crossref]
J. Diao, B. Han, J. Yin, X. Li, T. Lang, and Z. Hong, “Analogue of electromagnetically induced transparency in an S-shaped all-dielectric metasurface,” IEEE Photon. J. 11, 4601110 (2019).
[Crossref]
A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D.-Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances,” Nano Lett. 16, 4857–4861 (2016).
[Crossref]
J. Wang, X. Zhang, M. Yan, L. Yang, F. Hou, W. Sun, X. Zhang, L. Yuan, H. Xiao, and T. Wang, “Embedded whispering-gallery mode microsphere resonator in a tapered hollow annular core fiber,” Photon. Res. 6, 1124–1129 (2018).
[Crossref]
C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]
C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]
Y. Wen, Y. Sun, C. Deng, L. Huang, G. Hu, B. Yun, R. Zhang, and Y. Cui, “High sensitivity and FOM refractive index sensing based on Fano resonance in all-grating racetrack resonators,” Opt. Commun. 446, 141–146 (2019).
[Crossref]
B. Yun, R. Zhang, G. Hu, and Y. Cui, “Ultra sharp Fano resonances induced by coupling between plasmonic stub and circular cavity resonators,” Plasmonics 11, 1157–1162 (2016).
[Crossref]
B. Yun, G. Hu, R. Zhang, and C. Yiping, “Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator,” J. Opt. 18, 055002 (2016).
[Crossref]
Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mørk, “Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry,” Laser Photon. Rev. 9, 241–247 (2015).
[Crossref]
Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]
S. Hu, D. Liu, H. Lin, J. Chen, Y. Yi, and H. Yang, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121, 123103 (2017).
[Crossref]
Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices,” Nano Energy 68, 104280 (2020).
[Crossref]
N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11, 391–397 (2011).
[Crossref]
Y. Wen, Y. Sun, C. Deng, L. Huang, G. Hu, B. Yun, R. Zhang, and Y. Cui, “High sensitivity and FOM refractive index sensing based on Fano resonance in all-grating racetrack resonators,” Opt. Commun. 446, 141–146 (2019).
[Crossref]
C. De-Eknamkul, X. Zhang, M.-Q. Zhao, W. Huang, R. Liu, A. T. C. Johnson, and E. Cubukcu, “MoS2-enabled dual-mode optoelectronic biosensor using a water soluble variant of mu-opioid receptor for opioid peptide detection,” 2D Mater. 7, 014004 (2020).
[Crossref]
Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. 524, 637–662 (2012).
[Crossref]
D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, and S.-D. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119, 4252–4260 (2015).
[Crossref]
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
S. Pang, Y. Huo, Y. Xie, and L. Hao, “Fano resonance in MIM waveguide structure with oblique rectangular cavity and its application in sensor,” Opt. Commun. 381, 409–413 (2016).
[Crossref]
Y. Y. Huo, T. Q. Jia, Y. Zhang, H. Zhao, S. A. Zhang, D. H. Feng, and Z. R. Sun, “Spaser based on Fano resonance in a rod and concentric square ring-disk nanostructure,” Appl. Phys. Lett. 104, 113104 (2014).
[Crossref]
T. Lee, T. Nomura, X. Su, and H. Iizuka, “Fano-like acoustic resonance for subwavelength directional sensing: 0–360 degree measurement,” Adv. Sci. 7, 1903101 (2020).
[Crossref]
K. B. Joanesarson, J. Iles-Smith, M. Heuck, and J. Mørk, “Few-photon transport in Fano-resonance waveguide geometries,” Phys. Rev. A 101, 063809 (2020).
[Crossref]
E. V. Denning, J. Iles-Smith, and J. Mørk, “Quantum light-matter interaction and controlled phonon scattering in a photonic Fano cavity,” Phys. Rev. B 100, 214306 (2019).
[Crossref]
M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273–276 (2001).
[Crossref]
S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107 (1990).
[Crossref]
S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]
S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, D. A. Smirnova, L. Wang, H. H. Tan, C. Jagadish, D. N. Neshev, and Y. S. Kivshar, “Nonlinear optical magnetism revealed by second-harmonic generation in nanoantennas,” Nano Lett. 17, 3914–3918 (2017).
[Crossref]
S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23–36 (2016).
[Crossref]
J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5, 161–167 (2010).
[Crossref]
M. ElKabbash, T. Letsou, S. A. Jalil, N. Hoffman, J. Zhang, J. Rutledge, A. R. Lininger, C.-H. Fann, M. Hinczewski, G. Strangi, and C. Guo, “Fano-resonant ultrathin film optical coatings,” Nat. Nanotechnol. 16, 440–446 (2021).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. Jan Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]
Z. Liu, Y. Xu, C.-Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-enhanced circular dichroism in deformable stereo metasurfaces,” Adv. Mater. 32, 1907077 (2020).
[Crossref]
D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, and S.-D. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119, 4252–4260 (2015).
[Crossref]
C. Zheng, T. Jia, H. Zhao, S. Zhang, D. Feng, and Z. Sun, “Low threshold tunable spaser based on multipolar Fano resonances in disk–ring plasmonic nanostructures,” J. Phys. D 49, 015101 (2015).
[Crossref]
Y. Y. Huo, T. Q. Jia, Y. Zhang, H. Zhao, S. A. Zhang, D. H. Feng, and Z. R. Sun, “Spaser based on Fano resonance in a rod and concentric square ring-disk nanostructure,” Appl. Phys. Lett. 104, 113104 (2014).
[Crossref]
B. Wei and S. Jian, “A nanoscale Fano resonator by graphene-gold dipolar interference,” Plasmonics 13, 1889–1895 (2018).
[Crossref]
B. Wei and S. Jian, “Fano resonance in a U-shaped tunnel assisted graphene-based nanoring resonator waveguide system,” Opt. Commun. 425, 24–28 (2018).
[Crossref]
C. Jiang, L. Jiang, H. Yu, Y. Cui, X. Li, and G. Chen, “Fano resonance and slow light in hybrid optomechanics mediated by a two-level system,” Phys. Rev. A 96, 053821 (2017).
[Crossref]
J. Zhu, G. Wang, F. Jiang, Y. Qin, and H. Cong, “Temperature sensor of MoS2 based on hybrid plasmonic waveguides,” Plasmonics 14, 1863–1870 (2019).
[Crossref]
C. Jiang, L. Jiang, H. Yu, Y. Cui, X. Li, and G. Chen, “Fano resonance and slow light in hybrid optomechanics mediated by a two-level system,” Phys. Rev. A 96, 053821 (2017).
[Crossref]
Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices,” Nano Energy 68, 104280 (2020).
[Crossref]
N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16, 3607–3615 (2016).
[Crossref]
K. B. Joanesarson, J. Iles-Smith, M. Heuck, and J. Mørk, “Few-photon transport in Fano-resonance waveguide geometries,” Phys. Rev. A 101, 063809 (2020).
[Crossref]
C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]
Y. Shen, V. Rinnerbauer, I. Wang, V. Stelmakh, J. D. Joannopoulos, and M. Soljačić, “Structural colors from Fano resonances,” ACS Photon. 2, 27–32 (2015).
[Crossref]
C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]
B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]
J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[Crossref]
S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]
C. De-Eknamkul, X. Zhang, M.-Q. Zhao, W. Huang, R. Liu, A. T. C. Johnson, and E. Cubukcu, “MoS2-enabled dual-mode optoelectronic biosensor using a water soluble variant of mu-opioid receptor for opioid peptide detection,” 2D Mater. 7, 014004 (2020).
[Crossref]
B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]
C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]
Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. 524, 637–662 (2012).
[Crossref]
T. Lepetit and B. Kanté, “Controlling multipolar radiation with symmetries for electromagnetic bound states in the continuum,” Phys. Rev. B 90, 241103 (2014).
[Crossref]
R. Berkovits, F. von Oppen, and J. W. Kantelhardt, “Discrete charging of a quantum dot strongly coupled to external leads,” Eur. Phys. Lett. 68, 699–705 (2004).
[Crossref]
A. A. Bogdanov, K. L. Koshelv, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, Z. F. Sadrieva, K. B. Samusev, Y. S. Kivshar, and M. F. Limonov, “Bound states in the continuum and Fano resonances in the strong mode coupling regime,” Adv. Photon. 1, 016001 (2019).
[Crossref]
M. V. Rybin, P. V. Kapitanova, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, Yu. S. Kivshar, and M. F. Limonov, “Fano resonances in antennas: general control over radiation patterns,” Phys. Rev. B 88, 205106 (2013).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. Jan Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]
K. S. Modi, J. Kaur, S. P. Singh, U. Tiwari, and R. K. Sinha, “Extremely high figure of merit in all-dielectric split asymmetric arc metasurface for refractive index sensing,” Opt. Commun. 462, 125327 (2020).
[Crossref]
N. L. Kazanskiy, S. N. Khonina, and M. A. Butt, “Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: a brief review,” Phys. E 117, 113798 (2020).
[Crossref]
M. J. Akram, F. Ghafoor, M. M. Khan, and F. Saif, “Control of Fano resonances and slow light using Bose-Einstein condensates in a nanocavity,” Phys. Rev. A 95, 023810 (2017).
[Crossref]
N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16, 3607–3615 (2016).
[Crossref]
A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2, 247–264 (2013).
[Crossref]
C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[Crossref]
N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16, 3607–3615 (2016).
[Crossref]
N. L. Kazanskiy, S. N. Khonina, and M. A. Butt, “Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: a brief review,” Phys. E 117, 113798 (2020).
[Crossref]
S. I. Azzam, A. V. Kildishev, R.-M. Ma, C.-Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J.-L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light Sci. Appl. 9, 90 (2020).
[Crossref]
H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref]
G. Zhao, S. K. Özdemir, T. Wang, L. Xu, E. King, G.-L. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallery-mode microresonator,” Sci. Bull. 62(12), 875–878 (2017).
[Crossref]
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]
K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, and Y. Kivshar, “Subwavelength dielectric resonators for nonlinear nanophotonics,” Science 367, 288–292 (2020).
[Crossref]
Y. Kivshar, “All-dielectric meta-optics and non-linear nanophotonics,” Natl. Sci. Rev. 5, 144–158 (2018).
[Crossref]
A. A. Bogdanov, K. L. Koshelv, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, Z. F. Sadrieva, K. B. Samusev, Y. S. Kivshar, and M. F. Limonov, “Bound states in the continuum and Fano resonances in the strong mode coupling regime,” Adv. Photon. 1, 016001 (2019).
[Crossref]
K. V. Baryshnikova, D. A. Smirnova, B. S. Luk’yanchuk, and Y. S. Kivshar, “Optical anapoles: concepts and applications,” Adv. Opt. Mater. 7, 1801350 (2019).
[Crossref]
M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]
M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017).
[Crossref]
S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, D. A. Smirnova, L. Wang, H. H. Tan, C. Jagadish, D. N. Neshev, and Y. S. Kivshar, “Nonlinear optical magnetism revealed by second-harmonic generation in nanoantennas,” Nano Lett. 17, 3914–3918 (2017).
[Crossref]
A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D.-Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances,” Nano Lett. 16, 4857–4861 (2016).
[Crossref]
M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref]
M. V. Rybin, K. B. Samusev, I. S. Sinev, G. Semouchkin, E. Semouchkina, Y. S. Kivshar, and M. F. Limonov, “Mie scattering as a cascade of Fano resonances,” Opt. Express 21, 30107–30113 (2013).
[Crossref]
A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]
A. E. Miroshnichenko, S. Flach, A. V. Gorbach, B. S. Luk’yanchuk, Y. S. Kivshar, and M. I. Tribelsky, “Fano resonances: a discovery that was not made 100 years ago,” Opt. Photon. News 19(12), 48 (2008).
[Crossref]
S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E 74, 046603 (2006).
[Crossref]
M. Rybin and Yu. Kivshar, “Supercavity lasing,” Nature 541, 164–165 (2017).
[Crossref]
M. V. Rybin, P. V. Kapitanova, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, Yu. S. Kivshar, and M. F. Limonov, “Fano resonances in antennas: general control over radiation patterns,” Phys. Rev. B 88, 205106 (2013).
[Crossref]
V. V. Klimov, A. A. Pavlov, I. V. Treshin, and I. V. Zabkov, “Fano resonances in a photonic crystal covered with a perforated gold film and its application to bio-sensing,” J. Phys. D 50, 285101 (2017).
[Crossref]
Z.-X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
[Crossref]
Y. Huang, H. P. Ho, S. K. Kong, and A. V. Kabashin, “Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications,” Ann. Phys. 524, 637–662 (2012).
[Crossref]
K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, and Y. Kivshar, “Subwavelength dielectric resonators for nonlinear nanophotonics,” Science 367, 288–292 (2020).
[Crossref]
M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017).
[Crossref]
A. A. Bogdanov, K. L. Koshelv, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, Z. F. Sadrieva, K. B. Samusev, Y. S. Kivshar, and M. F. Limonov, “Bound states in the continuum and Fano resonances in the strong mode coupling regime,” Adv. Photon. 1, 016001 (2019).
[Crossref]
F. Krausz and M. I. Stockman, “Attosecond metrology: from electron capture to future signal processing,” Nat. Photonics 8, 205–213 (2014).
[Crossref]
K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref]
A. Kristensen, J. W. K. Yang, S. I. Bozhevolnyi, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2017).
[Crossref]
M. Gersborg-Hansen and A. Kristensen, “Tunability of optofluidic distributed feedback dye lasers,” Opt. Express 15, 137–142 (2007).
[Crossref]
L. H. Guessi, R. S. Machado, Y. Marques, L. S. Ricco, K. Kristinsson, M. Yoshida, I. A. Shelykh, M. De Souza, and A. C. Seridonio, “Catching the bound states in the continuum of a phantom atom in graphene,” Phys. Rev. B 92, 045409 (2015).
[Crossref]
L. H. Guessi, Y. Marques, R. S. Machado, K. Kristinsson, L. S. Ricco, I. A. Shelykh, M. S. Figueira, M. De Souza, and A. C. Seridonio, “Quantum phase transition triggering magnetic bound states in the continuum in graphene,” Phys. Rev. B 92, 245107 (2015).
[Crossref]
O. S. Latcham, Y. I. Gusieva, A. V. Shytov, O. Y. Gorobets, and V. V. Kruglyak, “Controlling acoustic waves using magnetoelastic Fano resonances,” Appl. Phys. Lett. 115, 082403 (2019).
[Crossref]
K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, and Y. Kivshar, “Subwavelength dielectric resonators for nonlinear nanophotonics,” Science 367, 288–292 (2020).
[Crossref]
S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, D. A. Smirnova, L. Wang, H. H. Tan, C. Jagadish, D. N. Neshev, and Y. S. Kivshar, “Nonlinear optical magnetism revealed by second-harmonic generation in nanoantennas,” Nano Lett. 17, 3914–3918 (2017).
[Crossref]
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]
N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11, 391–397 (2011).
[Crossref]
N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16, 3607–3615 (2016).
[Crossref]
J. Xiang, J. Chen, S. Lan, and A. E. Miroshnichenko, “Nanoscale optical display and sensing based on the modification of Fano lineshape,” Adv. Opt. Mater. 8, 2000489 (2020).
[Crossref]
J.-P. Connerade and A. M. Lane, “Interacting resonances in atomic spectroscopy,” Rep. Prog. Phys. 51, 1439–1478 (1988).
[Crossref]
J. Diao, B. Han, J. Yin, X. Li, T. Lang, and Z. Hong, “Analogue of electromagnetically induced transparency in an S-shaped all-dielectric metasurface,” IEEE Photon. J. 11, 4601110 (2019).
[Crossref]
M. B. Doost, W. Langbein, and E. A. Muljarov, “Resonant-state expansion applied to three-dimensional open optical systems,” Phys. Rev. A 90, 013834 (2014).
[Crossref]
N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]
L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref]
O. S. Latcham, Y. I. Gusieva, A. V. Shytov, O. Y. Gorobets, and V. V. Kruglyak, “Controlling acoustic waves using magnetoelastic Fano resonances,” Appl. Phys. Lett. 115, 082403 (2019).
[Crossref]
N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16, 3607–3615 (2016).
[Crossref]
J. Lee, N. Nookala, J. S. Gomez-Diaz, M. Tymchenko, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Ultrathin second-harmonic metasurfaces with record-high nonlinear optical response,” Adv. Opt. Mater. 4, 664–670 (2016).
[Crossref]
J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511, 65–69 (2014).
[Crossref]
C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]
B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]
J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[Crossref]
M. Limonov, S. Lee, S. Tajima, and A. Yamanaka, “Superconductivity-induced resonant Raman scattering in multilayer high-TC superconductors,” Phys. Rev. B 66, 054509 (2002).
[Crossref]
T. Lee, T. Nomura, X. Su, and H. Iizuka, “Fano-like acoustic resonance for subwavelength directional sensing: 0–360 degree measurement,” Adv. Sci. 7, 1903101 (2020).
[Crossref]
V. F. Gili, L. Carletti, A. Locatelli, D. Rocco, M. Finazzi, L. Ghirardini, I. Favero, C. Gomez, A. Lemaître, M. Celebrano, C. De Angelis, and G. Leo, “Monolithic AlGaAs second-harmonic nanoantennas,” Opt. Express 24, 15965–15971 (2016).
[Crossref]
K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref]
V. F. Gili, L. Carletti, A. Locatelli, D. Rocco, M. Finazzi, L. Ghirardini, I. Favero, C. Gomez, A. Lemaître, M. Celebrano, C. De Angelis, and G. Leo, “Monolithic AlGaAs second-harmonic nanoantennas,” Opt. Express 24, 15965–15971 (2016).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. Jan Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
T. Lepetit and B. Kanté, “Controlling multipolar radiation with symmetries for electromagnetic bound states in the continuum,” Phys. Rev. B 90, 241103 (2014).
[Crossref]
T. Lepetit, E. Akmansoy, J.-P. Ganne, and J.-M. Lourtioz, “Resonance continuum coupling in high-permittivity dielectric metamaterials,” Phys. Rev. B 82, 195307 (2010).
[Crossref]
C. Sciancalepore, B. B. Bakir, X. Letartre, J.-M. Fedeli, N. Olivier, D. Bordel, C. Seassal, P. Rojo-Romeo, P. Regreny, and P. Viktorovitch, “Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration,” J. Lightwave Technol. 29, 2015–2024 (2011).
[Crossref]
M. ElKabbash, T. Letsou, S. A. Jalil, N. Hoffman, J. Zhang, J. Rutledge, A. R. Lininger, C.-H. Fann, M. Hinczewski, G. Strangi, and C. Guo, “Fano-resonant ultrathin film optical coatings,” Nat. Nanotechnol. 16, 440–446 (2021).
[Crossref]
S. Zhan, Y. Peng, Z. He, B. Li, Z. Chen, H. Xu, and H. Li, “Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide,” Sci. Rep. 6, 22428 (2016).
[Crossref]
Y.-C. Liu, B.-B. Li, and Y.-F. Xiao, “Electromagnetically induced transparency in optical microcavities,” Nanophotonics 6, 789–811 (2017).
[Crossref]
W. Zhu, Y. Fan, C. Li, R. Yang, S. Yan, Q. Fu, F. Zhang, C. Gu, and J. Li, “Realization of a near-infrared active Fano-resonant asymmetric metasurface by precisely controlling the phase transition of Ge2Sb2Te5,” Nanoscale 12, 8758–8767 (2020).
[Crossref]
Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices,” Nano Energy 68, 104280 (2020).
[Crossref]
A. Krasnok, D. Baranov, H. Li, M.-A. Miri, F. Monticone, and A. Alù, “Anomalies in light scattering,” Adv. Opt. Photon. 11, 892–951 (2019).
[Crossref]
H. Xu, M. Zhao, C. Xiong, B. Zhang, M. Zheng, J. Zeng, H. Xia, and H. Li, “Dual plasmonically tunable slow light based on plasmon-induced transparency in planar graphene ribbon metamaterials,” Phys. Chem. Chem. Phys. 20, 25959–25966 (2018).
[Crossref]
S. Zhan, Y. Peng, Z. He, B. Li, Z. Chen, H. Xu, and H. Li, “Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide,” Sci. Rep. 6, 22428 (2016).
[Crossref]
A. Cui, Z. Liu, J. Li, T. H. Shen, X. Xia, Z. Li, Z. Gong, H. Li, B. Wang, J. Li, H. Yang, W. Li, and C. Gu, “Directly patterned substrate-free plasmonic ‘nanograter’ structures with unusual Fano resonances,” Light Sci. Appl. 4, e308 (2015).
[Crossref]
J. Chen, J. Li, X. Liu, S. Rohimah, H. Tian, and D. Qi, “Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics,” Opt. Commun. 482, 126563 (2021).
[Crossref]
Z. Liu, Y. Xu, C.-Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-enhanced circular dichroism in deformable stereo metasurfaces,” Adv. Mater. 32, 1907077 (2020).
[Crossref]
W. Zhu, Y. Fan, C. Li, R. Yang, S. Yan, Q. Fu, F. Zhang, C. Gu, and J. Li, “Realization of a near-infrared active Fano-resonant asymmetric metasurface by precisely controlling the phase transition of Ge2Sb2Te5,” Nanoscale 12, 8758–8767 (2020).
[Crossref]
Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, and N. X. Fang, “Nano-Kirigami with giant optical chirality,” Sci. Adv. 4, eaat4436 (2018).
[Crossref]
Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z.-Y. Li, “Fano resonance Rabi splitting of surface plasmons,” Sci. Rep. 7, 8010 (2017).
[Crossref]
Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z.-Y. Li, “Fano resonance Rabi splitting of surface plasmons,” Sci. Rep. 7, 8010 (2017).
[Crossref]
S. Zhang, J. Li, R. Yu, W. Wang, and Y. Wu, “Optical multistability and Fano line-shape control via mode coupling in whispering-gallery-mode microresonator optomechanics,” Sci. Rep. 7, 39781 (2017).
[Crossref]
L.-H. Du, J. Li, Q. Liu, J.-H. Zhao, and L.-G. Zhu, “High-Q Fano-like resonance based on a symmetric dimer structure and its terahertz sensing application,” Opt. Mater. Express 7, 1335–1342 (2017).
[Crossref]
Z. Liu, Z. Liu, J. Li, W. Li, J. Li, C. Gu, and Z.-Y. Li, “3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials,” Sci. Rep. 6, 27817 (2016).
[Crossref]
Z. Liu, Z. Liu, J. Li, W. Li, J. Li, C. Gu, and Z.-Y. Li, “3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials,” Sci. Rep. 6, 27817 (2016).
[Crossref]
J. Li, R. Yu, J. Liu, C. Ding, and Y. Wu, “Fano line-shape control and superluminal light using cavity quantum electrodynamics with a partially transmitting element,” Phys. Rev. A 93, 053814 (2016).
[Crossref]
A. Cui, Z. Liu, J. Li, T. H. Shen, X. Xia, Z. Li, Z. Gong, H. Li, B. Wang, J. Li, H. Yang, W. Li, and C. Gu, “Directly patterned substrate-free plasmonic ‘nanograter’ structures with unusual Fano resonances,” Light Sci. Appl. 4, e308 (2015).
[Crossref]
A. Cui, Z. Liu, J. Li, T. H. Shen, X. Xia, Z. Li, Z. Gong, H. Li, B. Wang, J. Li, H. Yang, W. Li, and C. Gu, “Directly patterned substrate-free plasmonic ‘nanograter’ structures with unusual Fano resonances,” Light Sci. Appl. 4, e308 (2015).
[Crossref]
P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]
X. Long, M. Zhang, Z. Xie, M. Tang, and L. Li, “Sharp Fano resonance induced by all-dielectric asymmetric metasurface,” Opt. Commun. 459, 124942 (2020).
[Crossref]
Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]
Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z.-Y. Li, “Fano resonance Rabi splitting of surface plasmons,” Sci. Rep. 7, 8010 (2017).
[Crossref]
Z. Liu, Z. Liu, J. Li, W. Li, J. Li, C. Gu, and Z.-Y. Li, “3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials,” Sci. Rep. 6, 27817 (2016).
[Crossref]
A. Cui, Z. Liu, J. Li, T. H. Shen, X. Xia, Z. Li, Z. Gong, H. Li, B. Wang, J. Li, H. Yang, W. Li, and C. Gu, “Directly patterned substrate-free plasmonic ‘nanograter’ structures with unusual Fano resonances,” Light Sci. Appl. 4, e308 (2015).
[Crossref]
Z. Liu, Y. Xu, C.-Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-enhanced circular dichroism in deformable stereo metasurfaces,” Adv. Mater. 32, 1907077 (2020).
[Crossref]
J. Diao, B. Han, J. Yin, X. Li, T. Lang, and Z. Hong, “Analogue of electromagnetically induced transparency in an S-shaped all-dielectric metasurface,” IEEE Photon. J. 11, 4601110 (2019).
[Crossref]
C. Jiang, L. Jiang, H. Yu, Y. Cui, X. Li, and G. Chen, “Fano resonance and slow light in hybrid optomechanics mediated by a two-level system,” Phys. Rev. A 96, 053821 (2017).
[Crossref]
J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17, 1219–1225 (2017).
[Crossref]
J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22, 14688–14695 (2014).
[Crossref]
B. Yang, W. Liu, Z. Li, H. Cheng, S. Chen, and J. Tian, “Polarization-sensitive structural colors with Hue-and-saturation tuning based on all-dielectric nanopixels,” Adv. Opt. Mater. 6, 1701009 (2018).
[Crossref]
A. Cui, Z. Liu, J. Li, T. H. Shen, X. Xia, Z. Li, Z. Gong, H. Li, B. Wang, J. Li, H. Yang, W. Li, and C. Gu, “Directly patterned substrate-free plasmonic ‘nanograter’ structures with unusual Fano resonances,” Light Sci. Appl. 4, e308 (2015).
[Crossref]
Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid Nanofluid 4, 145–158 (2008).
[Crossref]
Z.-M. Meng and Z.-Y. Li, “Control of Fano resonances in photonic crystal nanobeams side-coupled with nanobeam cavities and their applications to refractive index sensing,” J. Phys. D 51, 095106 (2018).
[Crossref]
Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, and N. X. Fang, “Nano-Kirigami with giant optical chirality,” Sci. Adv. 4, eaat4436 (2018).
[Crossref]
Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z.-Y. Li, “Fano resonance Rabi splitting of surface plasmons,” Sci. Rep. 7, 8010 (2017).
[Crossref]
Z. Liu, Z. Liu, J. Li, W. Li, J. Li, C. Gu, and Z.-Y. Li, “3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials,” Sci. Rep. 6, 27817 (2016).
[Crossref]
B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]
I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149–158 (2017).
[Crossref]
M. Limonov, S. Lee, S. Tajima, and A. Yamanaka, “Superconductivity-induced resonant Raman scattering in multilayer high-TC superconductors,” Phys. Rev. B 66, 054509 (2002).
[Crossref]
A. A. Bogdanov, K. L. Koshelv, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, Z. F. Sadrieva, K. B. Samusev, Y. S. Kivshar, and M. F. Limonov, “Bound states in the continuum and Fano resonances in the strong mode coupling regime,” Adv. Photon. 1, 016001 (2019).
[Crossref]
M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017).
[Crossref]
M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]
M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref]
M. V. Rybin, K. B. Samusev, I. S. Sinev, G. Semouchkin, E. Semouchkina, Y. S. Kivshar, and M. F. Limonov, “Mie scattering as a cascade of Fano resonances,” Opt. Express 21, 30107–30113 (2013).
[Crossref]
M. V. Rybin, P. V. Kapitanova, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, Yu. S. Kivshar, and M. F. Limonov, “Fano resonances in antennas: general control over radiation patterns,” Phys. Rev. B 88, 205106 (2013).
[Crossref]
G. Q. Lin, H. Yang, Y. Deng, D. Wu, X. Zhou, Y. Wu, G. Cao, J. Chen, W. Sun, and R. Zhou, “Ultra-compact high-sensitivity plasmonic sensor based on Fano resonance with symmetry breaking ring cavity,” Opt. Express 27, 33358–33367 (2019).
[Crossref]
S. Hu, D. Liu, H. Lin, J. Chen, Y. Yi, and H. Yang, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121, 123103 (2017).
[Crossref]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
V. G. Hadjiev, X. Zhou, T. Strohm, M. Cardona, Q. M. Lin, and C. W. Chu, “Strong superconductivity-induced phonon self-energy effects in HgBa2Ca3Cu4O10+δ,” Phys. Rev. B 58, 1043 (1998).
[Crossref]
M. ElKabbash, T. Letsou, S. A. Jalil, N. Hoffman, J. Zhang, J. Rutledge, A. R. Lininger, C.-H. Fann, M. Hinczewski, G. Strangi, and C. Guo, “Fano-resonant ultrathin film optical coatings,” Nat. Nanotechnol. 16, 440–446 (2021).
[Crossref]
Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406–410 (2007).
[Crossref]
C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]
S. Hu, D. Liu, H. Lin, J. Chen, Y. Yi, and H. Yang, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121, 123103 (2017).
[Crossref]
Z. H. Han, W. N. Han, F. R. Liu, Z. Han, Y. P. Yuan, and Z. C. Cheng, “Ultrafast temporal-spatial dynamics of amorphous-to-crystalline phase transition in Ge2Sb2Te5 thin film triggered by multiple femtosecond laser pulses irradiation,” Nanotechnology 31, 115706 (2020).
[Crossref]
J. Li, R. Yu, J. Liu, C. Ding, and Y. Wu, “Fano line-shape control and superluminal light using cavity quantum electrodynamics with a partially transmitting element,” Phys. Rev. A 93, 053814 (2016).
[Crossref]
M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10, 2721–2726 (2010).
[Crossref]
N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]
C. De-Eknamkul, X. Zhang, M.-Q. Zhao, W. Huang, R. Liu, A. T. C. Johnson, and E. Cubukcu, “MoS2-enabled dual-mode optoelectronic biosensor using a water soluble variant of mu-opioid receptor for opioid peptide detection,” 2D Mater. 7, 014004 (2020).
[Crossref]
D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, and S.-D. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119, 4252–4260 (2015).
[Crossref]
W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]
B. Yang, W. Liu, Z. Li, H. Cheng, S. Chen, and J. Tian, “Polarization-sensitive structural colors with Hue-and-saturation tuning based on all-dielectric nanopixels,” Adv. Opt. Mater. 6, 1701009 (2018).
[Crossref]
J. Chen, J. Li, X. Liu, S. Rohimah, H. Tian, and D. Qi, “Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics,” Opt. Commun. 482, 126563 (2021).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]
Y.-C. Liu, B.-B. Li, and Y.-F. Xiao, “Electromagnetically induced transparency in optical microcavities,” Nanophotonics 6, 789–811 (2017).
[Crossref]
K.-H. Gu, X.-B. Yan, Y. Zhang, C.-B. Fu, Y.-M. Liu, X. Wang, and J.-H. Wu, “Tunable slow and fast light in an atom-assisted optomechanical system,” Opt. Commun. 338, 569–573 (2015).
[Crossref]
Z. Liu, Y. Xu, C.-Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-enhanced circular dichroism in deformable stereo metasurfaces,” Adv. Mater. 32, 1907077 (2020).
[Crossref]
Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, and N. X. Fang, “Nano-Kirigami with giant optical chirality,” Sci. Adv. 4, eaat4436 (2018).
[Crossref]
Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z.-Y. Li, “Fano resonance Rabi splitting of surface plasmons,” Sci. Rep. 7, 8010 (2017).
[Crossref]
Z. Liu, J. Li, Z. Liu, W. Li, J. Li, C. Gu, and Z.-Y. Li, “Fano resonance Rabi splitting of surface plasmons,” Sci. Rep. 7, 8010 (2017).
[Crossref]
Z. Liu, Z. Liu, J. Li, W. Li, J. Li, C. Gu, and Z.-Y. Li, “3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials,” Sci. Rep. 6, 27817 (2016).
[Crossref]
Z. Liu, Z. Liu, J. Li, W. Li, J. Li, C. Gu, and Z.-Y. Li, “3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials,” Sci. Rep. 6, 27817 (2016).
[Crossref]
A. Cui, Z. Liu, J. Li, T. H. Shen, X. Xia, Z. Li, Z. Gong, H. Li, B. Wang, J. Li, H. Yang, W. Li, and C. Gu, “Directly patterned substrate-free plasmonic ‘nanograter’ structures with unusual Fano resonances,” Light Sci. Appl. 4, e308 (2015).
[Crossref]
Z.-X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
[Crossref]
H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]
V. F. Gili, L. Carletti, A. Locatelli, D. Rocco, M. Finazzi, L. Ghirardini, I. Favero, C. Gomez, A. Lemaître, M. Celebrano, C. De Angelis, and G. Leo, “Monolithic AlGaAs second-harmonic nanoantennas,” Opt. Express 24, 15965–15971 (2016).
[Crossref]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]
N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11, 391–397 (2011).
[Crossref]
G. Zhao, S. K. Özdemir, T. Wang, L. Xu, E. King, G.-L. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallery-mode microresonator,” Sci. Bull. 62(12), 875–878 (2017).
[Crossref]
X. Long, M. Zhang, Z. Xie, M. Tang, and L. Li, “Sharp Fano resonance induced by all-dielectric asymmetric metasurface,” Opt. Commun. 459, 124942 (2020).
[Crossref]
T. Lepetit, E. Akmansoy, J.-P. Ganne, and J.-M. Lourtioz, “Resonance continuum coupling in high-permittivity dielectric metamaterials,” Phys. Rev. B 82, 195307 (2010).
[Crossref]
N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16, 3607–3615 (2016).
[Crossref]
J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511, 65–69 (2014).
[Crossref]
H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express 20, 20884–20893 (2012).
[Crossref]
Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, and N. X. Fang, “Nano-Kirigami with giant optical chirality,” Sci. Adv. 4, eaat4436 (2018).
[Crossref]
M. Chen, Z. Xiao, X. Lu, F. Lv, and Y. Zhou, “Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial,” Carbon 159, 273–282 (2020).
[Crossref]
B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]
K. V. Baryshnikova, D. A. Smirnova, B. S. Luk’yanchuk, and Y. S. Kivshar, “Optical anapoles: concepts and applications,” Adv. Opt. Mater. 7, 1801350 (2019).
[Crossref]
A. E. Miroshnichenko, S. Flach, A. V. Gorbach, B. S. Luk’yanchuk, Y. S. Kivshar, and M. I. Tribelsky, “Fano resonances: a discovery that was not made 100 years ago,” Opt. Photon. News 19(12), 48 (2008).
[Crossref]
M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273–276 (2001).
[Crossref]
X. Luo, D. Tsai, M. Gu, and M. Hong, “Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion,” Chem. Soc. Rev. 48, 2458–2494 (2019).
[Crossref]
Z. Gao, L. Wu, F. Gao, Y. Luo, and B. Zhang, “Spoof plasmonics: from metamaterial concept to topological description,” Adv. Mater. 30, 1706683 (2018).
[Crossref]
M. Chen, Z. Xiao, X. Lu, F. Lv, and Y. Zhou, “Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial,” Carbon 159, 273–282 (2020).
[Crossref]
A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]
M. Yamaguchi, A. Lyasota, and T. Yuge, “Theory of Fano effect in cavity quantum electrodynamics,” Phys. Rev. Res. 3, 013037 (2021).
[Crossref]
R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]
S. I. Azzam, A. V. Kildishev, R.-M. Ma, C.-Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J.-L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light Sci. Appl. 9, 90 (2020).
[Crossref]
R.-M. Ma and R. F. Oulton, “Applications of nanolasers,” Nat. Nanotechnol. 14, 12–22 (2019).
[Crossref]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]
M.-H. Zhuge, C. Pan, Y. Zheng, J. Tang, S. Ullah, Y. Ma, and Q. Yang, “Wavelength-tunable micro/nanolasers,” Adv. Opt. Mater. 7, 1900275 (2019).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]
W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]
H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002).
[Crossref]
L. H. Guessi, R. S. Machado, Y. Marques, L. S. Ricco, K. Kristinsson, M. Yoshida, I. A. Shelykh, M. De Souza, and A. C. Seridonio, “Catching the bound states in the continuum of a phantom atom in graphene,” Phys. Rev. B 92, 045409 (2015).
[Crossref]
L. H. Guessi, Y. Marques, R. S. Machado, K. Kristinsson, L. S. Ricco, I. A. Shelykh, M. S. Figueira, M. De Souza, and A. C. Seridonio, “Quantum phase transition triggering magnetic bound states in the continuum in graphene,” Phys. Rev. B 92, 245107 (2015).
[Crossref]
J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17, 1219–1225 (2017).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]
B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]
F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[Crossref]
C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]
M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106, 181101 (2015).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. Jan Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
P. Markoš, “Fano resonances and band structure of two-dimensional photonic structures,” Phys. Rev. A 92, 043814 (2015).
[Crossref]
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]
L. H. Guessi, R. S. Machado, Y. Marques, L. S. Ricco, K. Kristinsson, M. Yoshida, I. A. Shelykh, M. De Souza, and A. C. Seridonio, “Catching the bound states in the continuum of a phantom atom in graphene,” Phys. Rev. B 92, 045409 (2015).
[Crossref]
L. H. Guessi, Y. Marques, R. S. Machado, K. Kristinsson, L. S. Ricco, I. A. Shelykh, M. S. Figueira, M. De Souza, and A. C. Seridonio, “Quantum phase transition triggering magnetic bound states in the continuum in graphene,” Phys. Rev. B 92, 245107 (2015).
[Crossref]
B. Gurlek, V. Sandoghdar, and D. Martín-Cano, “Manipulation of quenching in nanoantenna-emitter systems enabled by external detuned cavities: a path to enhance strong-coupling,” ACS Photon. 5, 456–461 (2018).
[Crossref]
T. J. Arruda, A. S. Martinez, F. A. Pinheiro, R. Bachelard, S. Slama, and P. W. Courteille, “Fano resonances in plasmonic core-shell particles and the Purcell effect,” in Fano Resonances in Optics and Microwaves, Series in Optical Sciences, E. Kamenetskii, A. Sadreev, and A. Miroshnichenko, eds. (Springer, 2018), pp. 445–472.
K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, and Y. Kivshar, “Subwavelength dielectric resonators for nonlinear nanophotonics,” Science 367, 288–292 (2020).
[Crossref]
A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D.-Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances,” Nano Lett. 16, 4857–4861 (2016).
[Crossref]
Z.-M. Meng and Z.-Y. Li, “Control of Fano resonances in photonic crystal nanobeams side-coupled with nanobeam cavities and their applications to refractive index sensing,” J. Phys. D 51, 095106 (2018).
[Crossref]
H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express 20, 20884–20893 (2012).
[Crossref]
C. Forestiere and G. Miano, “On the nanoparticle resonances in the full-retarded regime,” J. Opt. 19, 075601 (2017).
[Crossref]
C. Forestiere, G. Miano, M. Pascale, and R. Tricarico, “A full-retarded spectral technique for the analysis of Fano resonances in a dielectric nanosphere,” in Fano Resonances in Optics and Microwaves, Series in Optical Sciences, E. Kamenetskii, A. Sadreev, and A. Miroshnichenko, eds. (Springer, 2018), pp. 185–218.
G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]
S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E 74, 046603 (2006).
[Crossref]
K. Bao, N. A. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A 100, 333–339 (2010).
[Crossref]
J. Xiang, J. Chen, S. Lan, and A. E. Miroshnichenko, “Nanoscale optical display and sensing based on the modification of Fano lineshape,” Adv. Opt. Mater. 8, 2000489 (2020).
[Crossref]
M. I. Tribelsky and A. E. Miroshnichenko, “Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles,” Phys. Rev. A 93, 053837 (2016).
[Crossref]
A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D.-Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances,” Nano Lett. 16, 4857–4861 (2016).
[Crossref]
A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]
A. E. Miroshnichenko, S. Flach, A. V. Gorbach, B. S. Luk’yanchuk, Y. S. Kivshar, and M. I. Tribelsky, “Fano resonances: a discovery that was not made 100 years ago,” Opt. Photon. News 19(12), 48 (2008).
[Crossref]
S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E 74, 046603 (2006).
[Crossref]
K. S. Modi, J. Kaur, S. P. Singh, U. Tiwari, and R. K. Sinha, “Extremely high figure of merit in all-dielectric split asymmetric arc metasurface for refractive index sensing,” Opt. Commun. 462, 125327 (2020).
[Crossref]
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]
A. Krasnok, D. Baranov, H. Li, M.-A. Miri, F. Monticone, and A. Alù, “Anomalies in light scattering,” Adv. Opt. Photon. 11, 892–951 (2019).
[Crossref]
F. Monticone and A. Alù, “Embedded photonic eigenvalues in 3D nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
[Crossref]
T. S. Rasmussen, Y. Yu, and J. Mork, “Modes, stability, and small-signal response of photonic crystal Fano lasers,” Opt. Express 26, 16365–16376 (2018).
[Crossref]
Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11, 81–84 (2017).
[Crossref]
T. S. Rasmussen, Y. Yu, and J. Mork, “Theory of self-pulsing in photonic crystal Fano lasers,” Laser Photon. Rev. 11, 1700089 (2017).
[Crossref]
Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]
K. B. Joanesarson, J. Iles-Smith, M. Heuck, and J. Mørk, “Few-photon transport in Fano-resonance waveguide geometries,” Phys. Rev. A 101, 063809 (2020).
[Crossref]
E. V. Denning, J. Iles-Smith, and J. Mørk, “Quantum light-matter interaction and controlled phonon scattering in a photonic Fano cavity,” Phys. Rev. B 100, 214306 (2019).
[Crossref]
D. Bekele, Y. Yu, K. Yvind, and J. Mørk, “In-plane photonic crystal devices using Fano resonances,” Laser Photon. Rev. 13, 1900054 (2019).
[Crossref]
Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mørk, “Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry,” Laser Photon. Rev. 9, 241–247 (2015).
[Crossref]
A. Kristensen, J. W. K. Yang, S. I. Bozhevolnyi, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2017).
[Crossref]
N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11, 391–397 (2011).
[Crossref]
M. B. Doost, W. Langbein, and E. A. Muljarov, “Resonant-state expansion applied to three-dimensional open optical systems,” Phys. Rev. A 90, 013834 (2014).
[Crossref]
F. Remacle, M. Munster, V. B. Pavlov-Verevkin, and M. Desouter-Lecomte, “Trapping in competitive decay of degenerate states,” Phys. Lett. A 145, 265–268 (1990).
[Crossref]
V. Nadtochenko, N. Denisov, A. Aybush, F. Gostev, I. Shelaev, A. Titov, S. Umanskiy, and D. Cherepanov, “Ultrafast spectroscopy of Fano-like resonance between optical phonon and excitons in CdSe quantum dots: dependence of coherent vibrational wave-packet dynamics on pump fluence,” Nanomaterials 7, 371 (2017).
[Crossref]
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, D. A. Smirnova, L. Wang, H. H. Tan, C. Jagadish, D. N. Neshev, and Y. S. Kivshar, “Nonlinear optical magnetism revealed by second-harmonic generation in nanoantennas,” Nano Lett. 17, 3914–3918 (2017).
[Crossref]
A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D.-Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances,” Nano Lett. 16, 4857–4861 (2016).
[Crossref]
Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[Crossref]
S. I. Azzam, A. V. Kildishev, R.-M. Ma, C.-Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J.-L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light Sci. Appl. 9, 90 (2020).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. Jan Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
T. Lee, T. Nomura, X. Su, and H. Iizuka, “Fano-like acoustic resonance for subwavelength directional sensing: 0–360 degree measurement,” Adv. Sci. 7, 1903101 (2020).
[Crossref]
J. Lee, N. Nookala, J. S. Gomez-Diaz, M. Tymchenko, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Ultrathin second-harmonic metasurfaces with record-high nonlinear optical response,” Adv. Opt. Mater. 4, 664–670 (2016).
[Crossref]
A. Kristensen, J. W. K. Yang, S. I. Bozhevolnyi, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2017).
[Crossref]
Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[Crossref]
L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref]
K. Bao, N. A. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys. A 100, 333–339 (2010).
[Crossref]
B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]
F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[Crossref]
P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. Jan Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. Jan Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
C. Sciancalepore, B. B. Bakir, X. Letartre, J.-M. Fedeli, N. Olivier, D. Bordel, C. Seassal, P. Rojo-Romeo, P. Regreny, and P. Viktorovitch, “Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration,” J. Lightwave Technol. 29, 2015–2024 (2011).
[Crossref]
Y. Boretz, G. Ordonez, S. Tanaka, and T. Petrosky, “Optically tunable bound states in the continuum,” Phys. Rev. A 90, 023853 (2014).
[Crossref]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]
A. Z. Devdariani, V. N. Ostrovskii, and Y. N. Sebyakin, “Crossing of quasistationary levels,” Sov. Phys. JETP 44, 477 (1976).
C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]
P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]
S. I. Azzam, A. V. Kildishev, R.-M. Ma, C.-Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J.-L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light Sci. Appl. 9, 90 (2020).
[Crossref]
R.-M. Ma and R. F. Oulton, “Applications of nanolasers,” Nat. Nanotechnol. 14, 12–22 (2019).
[Crossref]
R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]
Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices,” Nano Energy 68, 104280 (2020).
[Crossref]
Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]
G. Zhao, S. K. Özdemir, T. Wang, L. Xu, E. King, G.-L. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallery-mode microresonator,” Sci. Bull. 62(12), 875–878 (2017).
[Crossref]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
A. Ahmadivand, B. Gerislioglu, and N. Pala, “Optothermally controllable multiple high-order harmonics generation by Ge2Sb2Te5-mediated Fano clusters,” Opt. Mater. 84, 301–306 (2018).
[Crossref]
M.-H. Zhuge, C. Pan, Y. Zheng, J. Tang, S. Ullah, Y. Ma, and Q. Yang, “Wavelength-tunable micro/nanolasers,” Adv. Opt. Mater. 7, 1900275 (2019).
[Crossref]
S. Pang, Y. Huo, Y. Xie, and L. Hao, “Fano resonance in MIM waveguide structure with oblique rectangular cavity and its application in sensor,” Opt. Commun. 381, 409–413 (2016).
[Crossref]
N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency: sharp Fano resonances and slow light,” Opt. Photon. News 20, 22–27 (2009).
[Crossref]
K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, and Y. Kivshar, “Subwavelength dielectric resonators for nonlinear nanophotonics,” Science 367, 288–292 (2020).
[Crossref]
C. Forestiere, G. Miano, M. Pascale, and R. Tricarico, “A full-retarded spectral technique for the analysis of Fano resonances in a dielectric nanosphere,” in Fano Resonances in Optics and Microwaves, Series in Optical Sciences, E. Kamenetskii, A. Sadreev, and A. Miroshnichenko, eds. (Springer, 2018), pp. 185–218.
V. V. Klimov, A. A. Pavlov, I. V. Treshin, and I. V. Zabkov, “Fano resonances in a photonic crystal covered with a perforated gold film and its application to bio-sensing,” J. Phys. D 50, 285101 (2017).
[Crossref]
F. Remacle, M. Munster, V. B. Pavlov-Verevkin, and M. Desouter-Lecomte, “Trapping in competitive decay of degenerate states,” Phys. Lett. A 145, 265–268 (1990).
[Crossref]
S. Zhan, Y. Peng, Z. He, B. Li, Z. Chen, H. Xu, and H. Li, “Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide,” Sci. Rep. 6, 22428 (2016).
[Crossref]
J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]
Y. Boretz, G. Ordonez, S. Tanaka, and T. Petrosky, “Optically tunable bound states in the continuum,” Phys. Rev. A 90, 023853 (2014).
[Crossref]
Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]
N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]
T. J. Arruda, A. S. Martinez, F. A. Pinheiro, R. Bachelard, S. Slama, and P. W. Courteille, “Fano resonances in plasmonic core-shell particles and the Purcell effect,” in Fano Resonances in Optics and Microwaves, Series in Optical Sciences, E. Kamenetskii, A. Sadreev, and A. Miroshnichenko, eds. (Springer, 2018), pp. 445–472.
M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]
P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]
Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid Nanofluid 4, 145–158 (2008).
[Crossref]
U. Fano, G. Pupillo, A. Zannoni, and C. W. Clark, “On the absorption spectrum of noble gases at the arc spectrum limit,” J. Res. Natl. Inst. Stand. Technol. 110, 583–587 (2005).
[Crossref]
E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 37 (1946).
[Crossref]
J. Chen, J. Li, X. Liu, S. Rohimah, H. Tian, and D. Qi, “Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics,” Opt. Commun. 482, 126563 (2021).
[Crossref]
Z. Yan, L. Qian, P. Zhan, and Z. Wang, “Generation of tunable double Fano resonances by plasmon hybridization in graphene-metal metamaterial,” Appl. Phys. Express 11, 072001 (2018).
[Crossref]
J. Zhu, G. Wang, F. Jiang, Y. Qin, and H. Cong, “Temperature sensor of MoS2 based on hybrid plasmonic waveguides,” Plasmonics 14, 1863–1870 (2019).
[Crossref]
J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[Crossref]
S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, D. A. Smirnova, L. Wang, H. H. Tan, C. Jagadish, D. N. Neshev, and Y. S. Kivshar, “Nonlinear optical magnetism revealed by second-harmonic generation in nanoantennas,” Nano Lett. 17, 3914–3918 (2017).
[Crossref]
P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[Crossref]
J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17, 1219–1225 (2017).
[Crossref]
G. Zheng, X. Zou, Y. Chen, L. Xu, and W. Rao, “Fano resonance in graphene-MoS2 heterostructure-based surface plasmon resonance biosensor and its potential applications,” Opt. Mater. 66, 171–178 (2017).
[Crossref]
T. S. Rasmussen, Y. Yu, and J. Mork, “Modes, stability, and small-signal response of photonic crystal Fano lasers,” Opt. Express 26, 16365–16376 (2018).
[Crossref]
T. S. Rasmussen, Y. Yu, and J. Mork, “Theory of self-pulsing in photonic crystal Fano lasers,” Laser Photon. Rev. 11, 1700089 (2017).
[Crossref]
A. R. P. Rau, “Ugo Fano’s scientific life, including a curriculam vitae and a list of his publications,” Phys. Essays 13, 158–175 (2001).
[Crossref]
S. Redner, “Citation statistics from more than a century of physical review,” arXiv:physics/0407137 (2004).
C. Sciancalepore, B. B. Bakir, X. Letartre, J.-M. Fedeli, N. Olivier, D. Bordel, C. Seassal, P. Rojo-Romeo, P. Regreny, and P. Viktorovitch, “Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration,” J. Lightwave Technol. 29, 2015–2024 (2011).
[Crossref]
A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87, 1379 (2015).
[Crossref]
F. Remacle, M. Munster, V. B. Pavlov-Verevkin, and M. Desouter-Lecomte, “Trapping in competitive decay of degenerate states,” Phys. Lett. A 145, 265–268 (1990).
[Crossref]
A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87, 1379 (2015).
[Crossref]
G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550K at the wavelength of 1523nm,” Appl. Phys. Lett. 74, 3338–3340 (1999).
[Crossref]
L. H. Guessi, Y. Marques, R. S. Machado, K. Kristinsson, L. S. Ricco, I. A. Shelykh, M. S. Figueira, M. De Souza, and A. C. Seridonio, “Quantum phase transition triggering magnetic bound states in the continuum in graphene,” Phys. Rev. B 92, 245107 (2015).
[Crossref]
L. H. Guessi, R. S. Machado, Y. Marques, L. S. Ricco, K. Kristinsson, M. Yoshida, I. A. Shelykh, M. De Souza, and A. C. Seridonio, “Catching the bound states in the continuum of a phantom atom in graphene,” Phys. Rev. B 92, 045409 (2015).
[Crossref]
Y. Shen, V. Rinnerbauer, I. Wang, V. Stelmakh, J. D. Joannopoulos, and M. Soljačić, “Structural colors from Fano resonances,” ACS Photon. 2, 27–32 (2015).
[Crossref]
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]
K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref]
V. F. Gili, L. Carletti, A. Locatelli, D. Rocco, M. Finazzi, L. Ghirardini, I. Favero, C. Gomez, A. Lemaître, M. Celebrano, C. De Angelis, and G. Leo, “Monolithic AlGaAs second-harmonic nanoantennas,” Opt. Express 24, 15965–15971 (2016).
[Crossref]
B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]
Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]
J. Chen, J. Li, X. Liu, S. Rohimah, H. Tian, and D. Qi, “Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics,” Opt. Commun. 482, 126563 (2021).
[Crossref]
C. Sciancalepore, B. B. Bakir, X. Letartre, J.-M. Fedeli, N. Olivier, D. Bordel, C. Seassal, P. Rojo-Romeo, P. Regreny, and P. Viktorovitch, “Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration,” J. Lightwave Technol. 29, 2015–2024 (2011).
[Crossref]
M. ElKabbash, T. Letsou, S. A. Jalil, N. Hoffman, J. Zhang, J. Rutledge, A. R. Lininger, C.-H. Fann, M. Hinczewski, G. Strangi, and C. Guo, “Fano-resonant ultrathin film optical coatings,” Nat. Nanotechnol. 16, 440–446 (2021).
[Crossref]
M. Rybin and Yu. Kivshar, “Supercavity lasing,” Nature 541, 164–165 (2017).
[Crossref]
A. A. Bogdanov, K. L. Koshelv, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, Z. F. Sadrieva, K. B. Samusev, Y. S. Kivshar, and M. F. Limonov, “Bound states in the continuum and Fano resonances in the strong mode coupling regime,” Adv. Photon. 1, 016001 (2019).
[Crossref]
M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017).
[Crossref]
M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]
M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5, 8774 (2015).
[Crossref]
M. V. Rybin, K. B. Samusev, I. S. Sinev, G. Semouchkin, E. Semouchkina, Y. S. Kivshar, and M. F. Limonov, “Mie scattering as a cascade of Fano resonances,” Opt. Express 21, 30107–30113 (2013).
[Crossref]
M. V. Rybin, P. V. Kapitanova, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, Yu. S. Kivshar, and M. F. Limonov, “Fano resonances in antennas: general control over radiation patterns,” Phys. Rev. B 88, 205106 (2013).
[Crossref]
H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express 20, 20884–20893 (2012).
[Crossref]
A. A. Bogdanov, K. L. Koshelv, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, Z. F. Sadrieva, K. B. Samusev, Y. S. Kivshar, and M. F. Limonov, “Bound states in the continuum and Fano resonances in the strong mode coupling regime,” Adv. Photon. 1, 016001 (2019).
[Crossref]
M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017).
[Crossref]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
M. J. Akram, F. Ghafoor, M. M. Khan, and F. Saif, “Control of Fano resonances and slow light using Bose-Einstein condensates in a nanocavity,” Phys. Rev. A 95, 023810 (2017).
[Crossref]
M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10, 2721–2726 (2010).
[Crossref]
A. A. Bogdanov, K. L. Koshelv, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, Z. F. Sadrieva, K. B. Samusev, Y. S. Kivshar, and M. F. Limonov, “Bound states in the continuum and Fano resonances in the strong mode coupling regime,” Adv. Photon. 1, 016001 (2019).
[Crossref]
M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017).
[Crossref]
M. V. Rybin, K. B. Samusev, I. S. Sinev, G. Semouchkin, E. Semouchkina, Y. S. Kivshar, and M. F. Limonov, “Mie scattering as a cascade of Fano resonances,” Opt. Express 21, 30107–30113 (2013).
[Crossref]
A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]
B. Gurlek, V. Sandoghdar, and D. Martín-Cano, “Manipulation of quenching in nanoantenna-emitter systems enabled by external detuned cavities: a path to enhance strong-coupling,” ACS Photon. 5, 456–461 (2018).
[Crossref]
K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. H. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù, and J. Vuckovic, “Inverse-designed non-reciprocal pulse router for chip-based lidar,” Nat. Photonics 14, 369–374 (2020).
[Crossref]
L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref]
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]
C. Sciancalepore, B. B. Bakir, X. Letartre, J.-M. Fedeli, N. Olivier, D. Bordel, C. Seassal, P. Rojo-Romeo, P. Regreny, and P. Viktorovitch, “Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration,” J. Lightwave Technol. 29, 2015–2024 (2011).
[Crossref]
C. Sciancalepore, B. B. Bakir, X. Letartre, J.-M. Fedeli, N. Olivier, D. Bordel, C. Seassal, P. Rojo-Romeo, P. Regreny, and P. Viktorovitch, “Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration,” J. Lightwave Technol. 29, 2015–2024 (2011).
[Crossref]
A. Z. Devdariani, V. N. Ostrovskii, and Y. N. Sebyakin, “Crossing of quasistationary levels,” Sov. Phys. JETP 44, 477 (1976).
Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11, 81–84 (2017).
[Crossref]
W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]
L. H. Guessi, R. S. Machado, Y. Marques, L. S. Ricco, K. Kristinsson, M. Yoshida, I. A. Shelykh, M. De Souza, and A. C. Seridonio, “Catching the bound states in the continuum of a phantom atom in graphene,” Phys. Rev. B 92, 045409 (2015).
[Crossref]
L. H. Guessi, Y. Marques, R. S. Machado, K. Kristinsson, L. S. Ricco, I. A. Shelykh, M. S. Figueira, M. De Souza, and A. C. Seridonio, “Quantum phase transition triggering magnetic bound states in the continuum in graphene,” Phys. Rev. B 92, 245107 (2015).
[Crossref]
S. I. Azzam, A. V. Kildishev, R.-M. Ma, C.-Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J.-L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light Sci. Appl. 9, 90 (2020).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]
J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[Crossref]
A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D.-Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances,” Nano Lett. 16, 4857–4861 (2016).
[Crossref]
V. Nadtochenko, N. Denisov, A. Aybush, F. Gostev, I. Shelaev, A. Titov, S. Umanskiy, and D. Cherepanov, “Ultrafast spectroscopy of Fano-like resonance between optical phonon and excitons in CdSe quantum dots: dependence of coherent vibrational wave-packet dynamics on pump fluence,” Nanomaterials 7, 371 (2017).
[Crossref]
L. H. Guessi, Y. Marques, R. S. Machado, K. Kristinsson, L. S. Ricco, I. A. Shelykh, M. S. Figueira, M. De Souza, and A. C. Seridonio, “Quantum phase transition triggering magnetic bound states in the continuum in graphene,” Phys. Rev. B 92, 245107 (2015).
[Crossref]
L. H. Guessi, R. S. Machado, Y. Marques, L. S. Ricco, K. Kristinsson, M. Yoshida, I. A. Shelykh, M. De Souza, and A. C. Seridonio, “Catching the bound states in the continuum of a phantom atom in graphene,” Phys. Rev. B 92, 045409 (2015).
[Crossref]
J.-T. Shen and S. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95, 213001 (2005).
[Crossref]
A. Cui, Z. Liu, J. Li, T. H. Shen, X. Xia, Z. Li, Z. Gong, H. Li, B. Wang, J. Li, H. Yang, W. Li, and C. Gu, “Directly patterned substrate-free plasmonic ‘nanograter’ structures with unusual Fano resonances,” Light Sci. Appl. 4, e308 (2015).
[Crossref]
Y. Shen, V. Rinnerbauer, I. Wang, V. Stelmakh, J. D. Joannopoulos, and M. Soljačić, “Structural colors from Fano resonances,” ACS Photon. 2, 27–32 (2015).
[Crossref]
L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref]
S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]
A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D.-Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances,” Nano Lett. 16, 4857–4861 (2016).
[Crossref]
K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref]
W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]
N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16, 3607–3615 (2016).
[Crossref]
A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2, 247–264 (2013).
[Crossref]
C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[Crossref]
O. S. Latcham, Y. I. Gusieva, A. V. Shytov, O. Y. Gorobets, and V. V. Kruglyak, “Controlling acoustic waves using magnetoelastic Fano resonances,” Appl. Phys. Lett. 115, 082403 (2019).
[Crossref]
M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106, 181101 (2015).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]
K. S. Modi, J. Kaur, S. P. Singh, U. Tiwari, and R. K. Sinha, “Extremely high figure of merit in all-dielectric split asymmetric arc metasurface for refractive index sensing,” Opt. Commun. 462, 125327 (2020).
[Crossref]
K. S. Modi, J. Kaur, S. P. Singh, U. Tiwari, and R. K. Sinha, “Extremely high figure of merit in all-dielectric split asymmetric arc metasurface for refractive index sensing,” Opt. Commun. 462, 125327 (2020).
[Crossref]
K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. H. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù, and J. Vuckovic, “Inverse-designed non-reciprocal pulse router for chip-based lidar,” Nat. Photonics 14, 369–374 (2020).
[Crossref]
T. J. Arruda, A. S. Martinez, F. A. Pinheiro, R. Bachelard, S. Slama, and P. W. Courteille, “Fano resonances in plasmonic core-shell particles and the Purcell effect,” in Fano Resonances in Optics and Microwaves, Series in Optical Sciences, E. Kamenetskii, A. Sadreev, and A. Miroshnichenko, eds. (Springer, 2018), pp. 445–472.
M. V. Rybin, P. V. Kapitanova, D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, Yu. S. Kivshar, and M. F. Limonov, “Fano resonances in antennas: general control over radiation patterns,” Phys. Rev. B 88, 205106 (2013).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. Jan Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
K. V. Baryshnikova, D. A. Smirnova, B. S. Luk’yanchuk, and Y. S. Kivshar, “Optical anapoles: concepts and applications,” Adv. Opt. Mater. 7, 1801350 (2019).
[Crossref]
S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, D. A. Smirnova, L. Wang, H. H. Tan, C. Jagadish, D. N. Neshev, and Y. S. Kivshar, “Nonlinear optical magnetism revealed by second-harmonic generation in nanoantennas,” Nano Lett. 17, 3914–3918 (2017).
[Crossref]
A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D.-Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances,” Nano Lett. 16, 4857–4861 (2016).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. Jan Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010).
[Crossref]
C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]
Y. Shen, V. Rinnerbauer, I. Wang, V. Stelmakh, J. D. Joannopoulos, and M. Soljačić, “Structural colors from Fano resonances,” ACS Photon. 2, 27–32 (2015).
[Crossref]
C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]
B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]
J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[Crossref]
B. Ai, C. Song, L. Bradley, and Y. Zhao, “Strong Fano resonance excited in an array of nanoparticle-in-ring nanostructures for dual plasmonic sensor applications,” J. Phys. Chem. C 122, 20935–20944 (2018).
[Crossref]
F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[Crossref]
J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5, 161–167 (2010).
[Crossref]
R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]
S. K. Srivastava and B. D. Gupta, “Influence of ions on the surface plasmon resonance spectrum of a fiber optic refractive index sensor,” Sens. Actuators B Chem. 156, 559–562 (2011).
[Crossref]
Y. Shen, V. Rinnerbauer, I. Wang, V. Stelmakh, J. D. Joannopoulos, and M. Soljačić, “Structural colors from Fano resonances,” ACS Photon. 2, 27–32 (2015).
[Crossref]
S. I. Azzam, A. V. Kildishev, R.-M. Ma, C.-Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J.-L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light Sci. Appl. 9, 90 (2020).
[Crossref]
F. Krausz and M. I. Stockman, “Attosecond metrology: from electron capture to future signal processing,” Nat. Photonics 8, 205–213 (2014).
[Crossref]
M. I. Stockman, “Dark-hot resonances,” Nature 467, 541–542 (2010).
[Crossref]
P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]
D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[Crossref]
C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
M. ElKabbash, T. Letsou, S. A. Jalil, N. Hoffman, J. Zhang, J. Rutledge, A. R. Lininger, C.-H. Fann, M. Hinczewski, G. Strangi, and C. Guo, “Fano-resonant ultrathin film optical coatings,” Nat. Nanotechnol. 16, 440–446 (2021).
[Crossref]
V. G. Hadjiev, X. Zhou, T. Strohm, M. Cardona, Q. M. Lin, and C. W. Chu, “Strong superconductivity-induced phonon self-energy effects in HgBa2Ca3Cu4O10+δ,” Phys. Rev. B 58, 1043 (1998).
[Crossref]
D.-S. Su, D. P. Tsai, T.-J. Yen, and T. Tanaka, “Ultrasensitive and selective gas sensor based on a channel plasmonic structure with an enormous hot spot region,” ACS Sens. 4, 2900–2907 (2019).
[Crossref]
T. Lee, T. Nomura, X. Su, and H. Iizuka, “Fano-like acoustic resonance for subwavelength directional sensing: 0–360 degree measurement,” Adv. Sci. 7, 1903101 (2020).
[Crossref]
W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004).
[Crossref]
Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices,” Nano Energy 68, 104280 (2020).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. Jan Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
S. Zhang, S.-J. Tang, S. Feng, Y.-F. Xiao, W. Cui, X. Wang, W. Sun, J. Ye, P. Han, X. Zhang, and Y. Zhang, “High-Q polymer microcavities integrated on a multicore fiber facet for vapor sensing,” Adv. Opt. Mater. 7, 1900602 (2019).
[Crossref]
G. Q. Lin, H. Yang, Y. Deng, D. Wu, X. Zhou, Y. Wu, G. Cao, J. Chen, W. Sun, and R. Zhou, “Ultra-compact high-sensitivity plasmonic sensor based on Fano resonance with symmetry breaking ring cavity,” Opt. Express 27, 33358–33367 (2019).
[Crossref]
J. Wang, X. Zhang, M. Yan, L. Yang, F. Hou, W. Sun, X. Zhang, L. Yuan, H. Xiao, and T. Wang, “Embedded whispering-gallery mode microsphere resonator in a tapered hollow annular core fiber,” Photon. Res. 6, 1124–1129 (2018).
[Crossref]
Y. Wen, Y. Sun, C. Deng, L. Huang, G. Hu, B. Yun, R. Zhang, and Y. Cui, “High sensitivity and FOM refractive index sensing based on Fano resonance in all-grating racetrack resonators,” Opt. Commun. 446, 141–146 (2019).
[Crossref]
C. Zheng, T. Jia, H. Zhao, S. Zhang, D. Feng, and Z. Sun, “Low threshold tunable spaser based on multipolar Fano resonances in disk–ring plasmonic nanostructures,” J. Phys. D 49, 015101 (2015).
[Crossref]
Y. Y. Huo, T. Q. Jia, Y. Zhang, H. Zhao, S. A. Zhang, D. H. Feng, and Z. R. Sun, “Spaser based on Fano resonance in a rod and concentric square ring-disk nanostructure,” Appl. Phys. Lett. 104, 113104 (2014).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
M. Limonov, S. Lee, S. Tajima, and A. Yamanaka, “Superconductivity-induced resonant Raman scattering in multilayer high-TC superconductors,” Phys. Rev. B 66, 054509 (2002).
[Crossref]
H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
[Crossref]
S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, D. A. Smirnova, L. Wang, H. H. Tan, C. Jagadish, D. N. Neshev, and Y. S. Kivshar, “Nonlinear optical magnetism revealed by second-harmonic generation in nanoantennas,” Nano Lett. 17, 3914–3918 (2017).
[Crossref]
Y. Boretz, G. Ordonez, S. Tanaka, and T. Petrosky, “Optically tunable bound states in the continuum,” Phys. Rev. A 90, 023853 (2014).
[Crossref]
D.-S. Su, D. P. Tsai, T.-J. Yen, and T. Tanaka, “Ultrasensitive and selective gas sensor based on a channel plasmonic structure with an enormous hot spot region,” ACS Sens. 4, 2900–2907 (2019).
[Crossref]
M.-H. Zhuge, C. Pan, Y. Zheng, J. Tang, S. Ullah, Y. Ma, and Q. Yang, “Wavelength-tunable micro/nanolasers,” Adv. Opt. Mater. 7, 1900275 (2019).
[Crossref]
X. Long, M. Zhang, Z. Xie, M. Tang, and L. Li, “Sharp Fano resonance induced by all-dielectric asymmetric metasurface,” Opt. Commun. 459, 124942 (2020).
[Crossref]
S. Zhang, S.-J. Tang, S. Feng, Y.-F. Xiao, W. Cui, X. Wang, W. Sun, J. Ye, P. Han, X. Zhang, and Y. Zhang, “High-Q polymer microcavities integrated on a multicore fiber facet for vapor sensing,” Adv. Opt. Mater. 7, 1900602 (2019).
[Crossref]
Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices,” Nano Energy 68, 104280 (2020).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]
Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]
J. Chen, J. Li, X. Liu, S. Rohimah, H. Tian, and D. Qi, “Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics,” Opt. Commun. 482, 126563 (2021).
[Crossref]
B. Yang, W. Liu, Z. Li, H. Cheng, S. Chen, and J. Tian, “Polarization-sensitive structural colors with Hue-and-saturation tuning based on all-dielectric nanopixels,” Adv. Opt. Mater. 6, 1701009 (2018).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]
V. Nadtochenko, N. Denisov, A. Aybush, F. Gostev, I. Shelaev, A. Titov, S. Umanskiy, and D. Cherepanov, “Ultrafast spectroscopy of Fano-like resonance between optical phonon and excitons in CdSe quantum dots: dependence of coherent vibrational wave-packet dynamics on pump fluence,” Nanomaterials 7, 371 (2017).
[Crossref]
A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]
K. S. Modi, J. Kaur, S. P. Singh, U. Tiwari, and R. K. Sinha, “Extremely high figure of merit in all-dielectric split asymmetric arc metasurface for refractive index sensing,” Opt. Commun. 462, 125327 (2020).
[Crossref]
Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices,” Nano Energy 68, 104280 (2020).
[Crossref]
N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16, 3607–3615 (2016).
[Crossref]
V. V. Klimov, A. A. Pavlov, I. V. Treshin, and I. V. Zabkov, “Fano resonances in a photonic crystal covered with a perforated gold film and its application to bio-sensing,” J. Phys. D 50, 285101 (2017).
[Crossref]
M. I. Tribelsky and A. E. Miroshnichenko, “Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles,” Phys. Rev. A 93, 053837 (2016).
[Crossref]
A. E. Miroshnichenko, S. Flach, A. V. Gorbach, B. S. Luk’yanchuk, Y. S. Kivshar, and M. I. Tribelsky, “Fano resonances: a discovery that was not made 100 years ago,” Opt. Photon. News 19(12), 48 (2008).
[Crossref]
C. Forestiere, G. Miano, M. Pascale, and R. Tricarico, “A full-retarded spectral technique for the analysis of Fano resonances in a dielectric nanosphere,” in Fano Resonances in Optics and Microwaves, Series in Optical Sciences, E. Kamenetskii, A. Sadreev, and A. Miroshnichenko, eds. (Springer, 2018), pp. 185–218.
J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5, 161–167 (2010).
[Crossref]
X. Luo, D. Tsai, M. Gu, and M. Hong, “Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion,” Chem. Soc. Rev. 48, 2458–2494 (2019).
[Crossref]
D.-S. Su, D. P. Tsai, T.-J. Yen, and T. Tanaka, “Ultrasensitive and selective gas sensor based on a channel plasmonic structure with an enormous hot spot region,” ACS Sens. 4, 2900–2907 (2019).
[Crossref]
K. L. Tsakmakidis, O. Hess, R. W. Boyd, and X. Zhang, “Ultraslow waves on the nanoscale,” Science 358, eaan5196 (2017).
[Crossref]
N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16, 3607–3615 (2016).
[Crossref]
J. Lee, N. Nookala, J. S. Gomez-Diaz, M. Tymchenko, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Ultrathin second-harmonic metasurfaces with record-high nonlinear optical response,” Adv. Opt. Mater. 4, 664–670 (2016).
[Crossref]
J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511, 65–69 (2014).
[Crossref]
M.-H. Zhuge, C. Pan, Y. Zheng, J. Tang, S. Ullah, Y. Ma, and Q. Yang, “Wavelength-tunable micro/nanolasers,” Adv. Opt. Mater. 7, 1900275 (2019).
[Crossref]
H. Lu, B. Sadani, G. Ulliac, N. Courjal, C. Guyot, J.-M. Merolla, M. Collet, F. I. Baida, and M.-P. Bernal, “6-micron interaction length electro-optic modulation based on lithium niobate photonic crystal cavity,” Opt. Express 20, 20884–20893 (2012).
[Crossref]
V. Nadtochenko, N. Denisov, A. Aybush, F. Gostev, I. Shelaev, A. Titov, S. Umanskiy, and D. Cherepanov, “Ultrafast spectroscopy of Fano-like resonance between optical phonon and excitons in CdSe quantum dots: dependence of coherent vibrational wave-packet dynamics on pump fluence,” Nanomaterials 7, 371 (2017).
[Crossref]
N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11, 391–397 (2011).
[Crossref]
F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[Crossref]
L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. Jan Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11, 391–397 (2011).
[Crossref]
H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[Crossref]
K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. H. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù, and J. Vuckovic, “Inverse-designed non-reciprocal pulse router for chip-based lidar,” Nat. Photonics 14, 369–374 (2020).
[Crossref]
N. Verellen, P. Van Dorpe, C. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett. 11, 391–397 (2011).
[Crossref]
G. Veronis, Z. Yu, S. E. Kocabas, D. A. B. Miller, M. L. Brongersma, and S. H. Fang, “Metal–dielectric–metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chin. Opt. Lett. 7, 302–308 (2009).
[Crossref]
G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[Crossref]
C. Sciancalepore, B. B. Bakir, X. Letartre, J.-M. Fedeli, N. Olivier, D. Bordel, C. Seassal, P. Rojo-Romeo, P. Regreny, and P. Viktorovitch, “Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration,” J. Lightwave Technol. 29, 2015–2024 (2011).
[Crossref]
M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10, 2721–2726 (2010).
[Crossref]
J. von Neumann and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465–467 (1929).
R. Berkovits, F. von Oppen, and J. W. Kantelhardt, “Discrete charging of a quantum dot strongly coupled to external leads,” Eur. Phys. Lett. 68, 699–705 (2004).
[Crossref]
K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. H. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù, and J. Vuckovic, “Inverse-designed non-reciprocal pulse router for chip-based lidar,” Nat. Photonics 14, 369–374 (2020).
[Crossref]
H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[Crossref]
Z.-X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
[Crossref]
A. Cui, Z. Liu, J. Li, T. H. Shen, X. Xia, Z. Li, Z. Gong, H. Li, B. Wang, J. Li, H. Yang, W. Li, and C. Gu, “Directly patterned substrate-free plasmonic ‘nanograter’ structures with unusual Fano resonances,” Light Sci. Appl. 4, e308 (2015).
[Crossref]
Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]
J. Zhu, G. Wang, F. Jiang, Y. Qin, and H. Cong, “Temperature sensor of MoS2 based on hybrid plasmonic waveguides,” Plasmonics 14, 1863–1870 (2019).
[Crossref]
Y. Shen, V. Rinnerbauer, I. Wang, V. Stelmakh, J. D. Joannopoulos, and M. Soljačić, “Structural colors from Fano resonances,” ACS Photon. 2, 27–32 (2015).
[Crossref]
J. Wang, X. Zhang, M. Yan, L. Yang, F. Hou, W. Sun, X. Zhang, L. Yuan, H. Xiao, and T. Wang, “Embedded whispering-gallery mode microsphere resonator in a tapered hollow annular core fiber,” Photon. Res. 6, 1124–1129 (2018).
[Crossref]
W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]
S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, D. A. Smirnova, L. Wang, H. H. Tan, C. Jagadish, D. N. Neshev, and Y. S. Kivshar, “Nonlinear optical magnetism revealed by second-harmonic generation in nanoantennas,” Nano Lett. 17, 3914–3918 (2017).
[Crossref]
Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]
Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]
J. Wang, X. Zhang, M. Yan, L. Yang, F. Hou, W. Sun, X. Zhang, L. Yuan, H. Xiao, and T. Wang, “Embedded whispering-gallery mode microsphere resonator in a tapered hollow annular core fiber,” Photon. Res. 6, 1124–1129 (2018).
[Crossref]
G. Zhao, S. K. Özdemir, T. Wang, L. Xu, E. King, G.-L. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallery-mode microresonator,” Sci. Bull. 62(12), 875–878 (2017).
[Crossref]
S. Zhang, J. Li, R. Yu, W. Wang, and Y. Wu, “Optical multistability and Fano line-shape control via mode coupling in whispering-gallery-mode microresonator optomechanics,” Sci. Rep. 7, 39781 (2017).
[Crossref]
D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, and S.-D. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119, 4252–4260 (2015).
[Crossref]
S. Zhang, S.-J. Tang, S. Feng, Y.-F. Xiao, W. Cui, X. Wang, W. Sun, J. Ye, P. Han, X. Zhang, and Y. Zhang, “High-Q polymer microcavities integrated on a multicore fiber facet for vapor sensing,” Adv. Opt. Mater. 7, 1900602 (2019).
[Crossref]
K.-H. Gu, X.-B. Yan, Y. Zhang, C.-B. Fu, Y.-M. Liu, X. Wang, and J.-H. Wu, “Tunable slow and fast light in an atom-assisted optomechanical system,” Opt. Commun. 338, 569–573 (2015).
[Crossref]
Z. Yan, L. Qian, P. Zhan, and Z. Wang, “Generation of tunable double Fano resonances by plasmon hybridization in graphene-metal metamaterial,” Appl. Phys. Express 11, 072001 (2018).
[Crossref]
W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004).
[Crossref]
S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision for the road ahead,” Science 362, eaam9288 (2018).
[Crossref]
B. Wei and S. Jian, “Fano resonance in a U-shaped tunnel assisted graphene-based nanoring resonator waveguide system,” Opt. Commun. 425, 24–28 (2018).
[Crossref]
B. Wei and S. Jian, “A nanoscale Fano resonator by graphene-gold dipolar interference,” Plasmonics 13, 1889–1895 (2018).
[Crossref]
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[Crossref]
N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]
Y. Wen, Y. Sun, C. Deng, L. Huang, G. Hu, B. Yun, R. Zhang, and Y. Cui, “High sensitivity and FOM refractive index sensing based on Fano resonance in all-grating racetrack resonators,” Opt. Commun. 446, 141–146 (2019).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
J. von Neumann and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465–467 (1929).
L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref]
A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]
H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32, 3231–3242 (1985).
[Crossref]
K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref]
A. B. Khanikaev, C. Wu, and G. Shvets, “Fano-resonant metamaterials and their applications,” Nanophotonics 2, 247–264 (2013).
[Crossref]
C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[Crossref]
G. Q. Lin, H. Yang, Y. Deng, D. Wu, X. Zhou, Y. Wu, G. Cao, J. Chen, W. Sun, and R. Zhou, “Ultra-compact high-sensitivity plasmonic sensor based on Fano resonance with symmetry breaking ring cavity,” Opt. Express 27, 33358–33367 (2019).
[Crossref]
K.-H. Gu, X.-B. Yan, Y. Zhang, C.-B. Fu, Y.-M. Liu, X. Wang, and J.-H. Wu, “Tunable slow and fast light in an atom-assisted optomechanical system,” Opt. Commun. 338, 569–573 (2015).
[Crossref]
Z. Gao, L. Wu, F. Gao, Y. Luo, and B. Zhang, “Spoof plasmonics: from metamaterial concept to topological description,” Adv. Mater. 30, 1706683 (2018).
[Crossref]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]
G. Q. Lin, H. Yang, Y. Deng, D. Wu, X. Zhou, Y. Wu, G. Cao, J. Chen, W. Sun, and R. Zhou, “Ultra-compact high-sensitivity plasmonic sensor based on Fano resonance with symmetry breaking ring cavity,” Opt. Express 27, 33358–33367 (2019).
[Crossref]
Z.-X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
[Crossref]
S. Zhang, J. Li, R. Yu, W. Wang, and Y. Wu, “Optical multistability and Fano line-shape control via mode coupling in whispering-gallery-mode microresonator optomechanics,” Sci. Rep. 7, 39781 (2017).
[Crossref]
J. Li, R. Yu, J. Liu, C. Ding, and Y. Wu, “Fano line-shape control and superluminal light using cavity quantum electrodynamics with a partially transmitting element,” Phys. Rev. A 93, 053814 (2016).
[Crossref]
K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref]
H. Xu, M. Zhao, C. Xiong, B. Zhang, M. Zheng, J. Zeng, H. Xia, and H. Li, “Dual plasmonically tunable slow light based on plasmon-induced transparency in planar graphene ribbon metamaterials,” Phys. Chem. Chem. Phys. 20, 25959–25966 (2018).
[Crossref]
A. Cui, Z. Liu, J. Li, T. H. Shen, X. Xia, Z. Li, Z. Gong, H. Li, B. Wang, J. Li, H. Yang, W. Li, and C. Gu, “Directly patterned substrate-free plasmonic ‘nanograter’ structures with unusual Fano resonances,” Light Sci. Appl. 4, e308 (2015).
[Crossref]
L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref]
J. Xiang, J. Chen, S. Lan, and A. E. Miroshnichenko, “Nanoscale optical display and sensing based on the modification of Fano lineshape,” Adv. Opt. Mater. 8, 2000489 (2020).
[Crossref]
J. Wang, X. Zhang, M. Yan, L. Yang, F. Hou, W. Sun, X. Zhang, L. Yuan, H. Xiao, and T. Wang, “Embedded whispering-gallery mode microsphere resonator in a tapered hollow annular core fiber,” Photon. Res. 6, 1124–1129 (2018).
[Crossref]
S. Zhang, S.-J. Tang, S. Feng, Y.-F. Xiao, W. Cui, X. Wang, W. Sun, J. Ye, P. Han, X. Zhang, and Y. Zhang, “High-Q polymer microcavities integrated on a multicore fiber facet for vapor sensing,” Adv. Opt. Mater. 7, 1900602 (2019).
[Crossref]
Y.-C. Liu, B.-B. Li, and Y.-F. Xiao, “Electromagnetically induced transparency in optical microcavities,” Nanophotonics 6, 789–811 (2017).
[Crossref]
M. Chen, Z. Xiao, X. Lu, F. Lv, and Y. Zhou, “Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial,” Carbon 159, 273–282 (2020).
[Crossref]
S. Pang, Y. Huo, Y. Xie, and L. Hao, “Fano resonance in MIM waveguide structure with oblique rectangular cavity and its application in sensor,” Opt. Commun. 381, 409–413 (2016).
[Crossref]
X. Long, M. Zhang, Z. Xie, M. Tang, and L. Li, “Sharp Fano resonance induced by all-dielectric asymmetric metasurface,” Opt. Commun. 459, 124942 (2020).
[Crossref]
H. Xu, M. Zhao, C. Xiong, B. Zhang, M. Zheng, J. Zeng, H. Xia, and H. Li, “Dual plasmonically tunable slow light based on plasmon-induced transparency in planar graphene ribbon metamaterials,” Phys. Chem. Chem. Phys. 20, 25959–25966 (2018).
[Crossref]
Z.-X. Liu, B. Wang, C. Kong, H. Xiong, and Y. Wu, “Magnetic-field-dependent slow light in strontium atom-cavity system,” Appl. Phys. Lett. 112, 111109 (2018).
[Crossref]
H. Xu, M. Zhao, C. Xiong, B. Zhang, M. Zheng, J. Zeng, H. Xia, and H. Li, “Dual plasmonically tunable slow light based on plasmon-induced transparency in planar graphene ribbon metamaterials,” Phys. Chem. Chem. Phys. 20, 25959–25966 (2018).
[Crossref]
S. Zhan, Y. Peng, Z. He, B. Li, Z. Chen, H. Xu, and H. Li, “Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide,” Sci. Rep. 6, 22428 (2016).
[Crossref]
S. I. Azzam, A. V. Kildishev, R.-M. Ma, C.-Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J.-L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light Sci. Appl. 9, 90 (2020).
[Crossref]
G. Zhao, S. K. Özdemir, T. Wang, L. Xu, E. King, G.-L. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallery-mode microresonator,” Sci. Bull. 62(12), 875–878 (2017).
[Crossref]
G. Zheng, X. Zou, Y. Chen, L. Xu, and W. Rao, “Fano resonance in graphene-MoS2 heterostructure-based surface plasmon resonance biosensor and its potential applications,” Opt. Mater. 66, 171–178 (2017).
[Crossref]
S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, D. A. Smirnova, L. Wang, H. H. Tan, C. Jagadish, D. N. Neshev, and Y. S. Kivshar, “Nonlinear optical magnetism revealed by second-harmonic generation in nanoantennas,” Nano Lett. 17, 3914–3918 (2017).
[Crossref]
Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406–410 (2007).
[Crossref]
Z. Liu, Y. Xu, C.-Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-enhanced circular dichroism in deformable stereo metasurfaces,” Adv. Mater. 32, 1907077 (2020).
[Crossref]
Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices,” Nano Energy 68, 104280 (2020).
[Crossref]
Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11, 81–84 (2017).
[Crossref]
Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mørk, “Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry,” Laser Photon. Rev. 9, 241–247 (2015).
[Crossref]
Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]
M. Yamaguchi, A. Lyasota, and T. Yuge, “Theory of Fano effect in cavity quantum electrodynamics,” Phys. Rev. Res. 3, 013037 (2021).
[Crossref]
M. Limonov, S. Lee, S. Tajima, and A. Yamanaka, “Superconductivity-induced resonant Raman scattering in multilayer high-TC superconductors,” Phys. Rev. B 66, 054509 (2002).
[Crossref]
J. Wang, X. Zhang, M. Yan, L. Yang, F. Hou, W. Sun, X. Zhang, L. Yuan, H. Xiao, and T. Wang, “Embedded whispering-gallery mode microsphere resonator in a tapered hollow annular core fiber,” Photon. Res. 6, 1124–1129 (2018).
[Crossref]
W. Zhu, Y. Fan, C. Li, R. Yang, S. Yan, Q. Fu, F. Zhang, C. Gu, and J. Li, “Realization of a near-infrared active Fano-resonant asymmetric metasurface by precisely controlling the phase transition of Ge2Sb2Te5,” Nanoscale 12, 8758–8767 (2020).
[Crossref]
K.-H. Gu, X.-B. Yan, Y. Zhang, C.-B. Fu, Y.-M. Liu, X. Wang, and J.-H. Wu, “Tunable slow and fast light in an atom-assisted optomechanical system,” Opt. Commun. 338, 569–573 (2015).
[Crossref]
Z. Yan, L. Qian, P. Zhan, and Z. Wang, “Generation of tunable double Fano resonances by plasmon hybridization in graphene-metal metamaterial,” Appl. Phys. Express 11, 072001 (2018).
[Crossref]
B. Yang, W. Liu, Z. Li, H. Cheng, S. Chen, and J. Tian, “Polarization-sensitive structural colors with Hue-and-saturation tuning based on all-dielectric nanopixels,” Adv. Opt. Mater. 6, 1701009 (2018).
[Crossref]
G. Q. Lin, H. Yang, Y. Deng, D. Wu, X. Zhou, Y. Wu, G. Cao, J. Chen, W. Sun, and R. Zhou, “Ultra-compact high-sensitivity plasmonic sensor based on Fano resonance with symmetry breaking ring cavity,” Opt. Express 27, 33358–33367 (2019).
[Crossref]
S. Hu, D. Liu, H. Lin, J. Chen, Y. Yi, and H. Yang, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121, 123103 (2017).
[Crossref]
A. Cui, Z. Liu, J. Li, T. H. Shen, X. Xia, Z. Li, Z. Gong, H. Li, B. Wang, J. Li, H. Yang, W. Li, and C. Gu, “Directly patterned substrate-free plasmonic ‘nanograter’ structures with unusual Fano resonances,” Light Sci. Appl. 4, e308 (2015).
[Crossref]
W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]
A. Kristensen, J. W. K. Yang, S. I. Bozhevolnyi, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2017).
[Crossref]
K. Y. Yang, J. Skarda, M. Cotrufo, A. Dutt, G. H. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù, and J. Vuckovic, “Inverse-designed non-reciprocal pulse router for chip-based lidar,” Nat. Photonics 14, 369–374 (2020).
[Crossref]
J. Wang, X. Zhang, M. Yan, L. Yang, F. Hou, W. Sun, X. Zhang, L. Yuan, H. Xiao, and T. Wang, “Embedded whispering-gallery mode microsphere resonator in a tapered hollow annular core fiber,” Photon. Res. 6, 1124–1129 (2018).
[Crossref]
G. Zhao, S. K. Özdemir, T. Wang, L. Xu, E. King, G.-L. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallery-mode microresonator,” Sci. Bull. 62(12), 875–878 (2017).
[Crossref]
M.-H. Zhuge, C. Pan, Y. Zheng, J. Tang, S. Ullah, Y. Ma, and Q. Yang, “Wavelength-tunable micro/nanolasers,” Adv. Opt. Mater. 7, 1900275 (2019).
[Crossref]
W. Zhu, Y. Fan, C. Li, R. Yang, S. Yan, Q. Fu, F. Zhang, C. Gu, and J. Li, “Realization of a near-infrared active Fano-resonant asymmetric metasurface by precisely controlling the phase transition of Ge2Sb2Te5,” Nanoscale 12, 8758–8767 (2020).
[Crossref]
M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[Crossref]
Z. Liu, Y. Xu, C.-Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-enhanced circular dichroism in deformable stereo metasurfaces,” Adv. Mater. 32, 1907077 (2020).
[Crossref]
S. Zhang, S.-J. Tang, S. Feng, Y.-F. Xiao, W. Cui, X. Wang, W. Sun, J. Ye, P. Han, X. Zhang, and Y. Zhang, “High-Q polymer microcavities integrated on a multicore fiber facet for vapor sensing,” Adv. Opt. Mater. 7, 1900602 (2019).
[Crossref]
D.-S. Su, D. P. Tsai, T.-J. Yen, and T. Tanaka, “Ultrasensitive and selective gas sensor based on a channel plasmonic structure with an enormous hot spot region,” ACS Sens. 4, 2900–2907 (2019).
[Crossref]
H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10, 709–714 (2016).
[Crossref]
S. Hu, D. Liu, H. Lin, J. Chen, Y. Yi, and H. Yang, “Analogue of ultra-broadband and polarization-independent electromagnetically induced transparency using planar metamaterial,” J. Appl. Phys. 121, 123103 (2017).
[Crossref]
J. Diao, B. Han, J. Yin, X. Li, T. Lang, and Z. Hong, “Analogue of electromagnetically induced transparency in an S-shaped all-dielectric metasurface,” IEEE Photon. J. 11, 4601110 (2019).
[Crossref]
B. Yun, G. Hu, R. Zhang, and C. Yiping, “Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator,” J. Opt. 18, 055002 (2016).
[Crossref]
L. H. Guessi, R. S. Machado, Y. Marques, L. S. Ricco, K. Kristinsson, M. Yoshida, I. A. Shelykh, M. De Souza, and A. C. Seridonio, “Catching the bound states in the continuum of a phantom atom in graphene,” Phys. Rev. B 92, 045409 (2015).
[Crossref]
Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices,” Nano Energy 68, 104280 (2020).
[Crossref]
C. Jiang, L. Jiang, H. Yu, Y. Cui, X. Li, and G. Chen, “Fano resonance and slow light in hybrid optomechanics mediated by a two-level system,” Phys. Rev. A 96, 053821 (2017).
[Crossref]
Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]
S. Zhang, J. Li, R. Yu, W. Wang, and Y. Wu, “Optical multistability and Fano line-shape control via mode coupling in whispering-gallery-mode microresonator optomechanics,” Sci. Rep. 7, 39781 (2017).
[Crossref]
J. Li, R. Yu, J. Liu, C. Ding, and Y. Wu, “Fano line-shape control and superluminal light using cavity quantum electrodynamics with a partially transmitting element,” Phys. Rev. A 93, 053814 (2016).
[Crossref]
D. Bekele, Y. Yu, K. Yvind, and J. Mørk, “In-plane photonic crystal devices using Fano resonances,” Laser Photon. Rev. 13, 1900054 (2019).
[Crossref]
T. S. Rasmussen, Y. Yu, and J. Mork, “Modes, stability, and small-signal response of photonic crystal Fano lasers,” Opt. Express 26, 16365–16376 (2018).
[Crossref]
Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11, 81–84 (2017).
[Crossref]
T. S. Rasmussen, Y. Yu, and J. Mork, “Theory of self-pulsing in photonic crystal Fano lasers,” Laser Photon. Rev. 11, 1700089 (2017).
[Crossref]
Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mørk, “Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry,” Laser Photon. Rev. 9, 241–247 (2015).
[Crossref]
Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]
P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13, 471–475 (2014).
[Crossref]
G. Veronis, Z. Yu, S. E. Kocabas, D. A. B. Miller, M. L. Brongersma, and S. H. Fang, “Metal–dielectric–metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chin. Opt. Lett. 7, 302–308 (2009).
[Crossref]
Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]
J. Wang, X. Zhang, M. Yan, L. Yang, F. Hou, W. Sun, X. Zhang, L. Yuan, H. Xiao, and T. Wang, “Embedded whispering-gallery mode microsphere resonator in a tapered hollow annular core fiber,” Photon. Res. 6, 1124–1129 (2018).
[Crossref]
Z. H. Han, W. N. Han, F. R. Liu, Z. Han, Y. P. Yuan, and Z. C. Cheng, “Ultrafast temporal-spatial dynamics of amorphous-to-crystalline phase transition in Ge2Sb2Te5 thin film triggered by multiple femtosecond laser pulses irradiation,” Nanotechnology 31, 115706 (2020).
[Crossref]
M. Yamaguchi, A. Lyasota, and T. Yuge, “Theory of Fano effect in cavity quantum electrodynamics,” Phys. Rev. Res. 3, 013037 (2021).
[Crossref]
Y. Wen, Y. Sun, C. Deng, L. Huang, G. Hu, B. Yun, R. Zhang, and Y. Cui, “High sensitivity and FOM refractive index sensing based on Fano resonance in all-grating racetrack resonators,” Opt. Commun. 446, 141–146 (2019).
[Crossref]
B. Yun, R. Zhang, G. Hu, and Y. Cui, “Ultra sharp Fano resonances induced by coupling between plasmonic stub and circular cavity resonators,” Plasmonics 11, 1157–1162 (2016).
[Crossref]
B. Yun, G. Hu, R. Zhang, and C. Yiping, “Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator,” J. Opt. 18, 055002 (2016).
[Crossref]
D. Bekele, Y. Yu, K. Yvind, and J. Mørk, “In-plane photonic crystal devices using Fano resonances,” Laser Photon. Rev. 13, 1900054 (2019).
[Crossref]
Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11, 81–84 (2017).
[Crossref]
Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mørk, “Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry,” Laser Photon. Rev. 9, 241–247 (2015).
[Crossref]
Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]
V. V. Klimov, A. A. Pavlov, I. V. Treshin, and I. V. Zabkov, “Fano resonances in a photonic crystal covered with a perforated gold film and its application to bio-sensing,” J. Phys. D 50, 285101 (2017).
[Crossref]
F. Zangeneh-Nejad and R. Fleury, “Topological Fano resonances,” Phys. Rev. Lett. 122, 014301 (2019).
[Crossref]
U. Fano, G. Pupillo, A. Zannoni, and C. W. Clark, “On the absorption spectrum of noble gases at the arc spectrum limit,” J. Res. Natl. Inst. Stand. Technol. 110, 583–587 (2005).
[Crossref]
F. B. Zarrabi, M. Bazgir, S. Ebrahimi, and A. S. Arezoomand, “Fano resonance for U-I nano-array independent to the polarization providing bio-sensing applications,” J. Electromagn. Waves. Appl. 31, 1444–1452 (2017).
[Crossref]
H. Xu, M. Zhao, C. Xiong, B. Zhang, M. Zheng, J. Zeng, H. Xia, and H. Li, “Dual plasmonically tunable slow light based on plasmon-induced transparency in planar graphene ribbon metamaterials,” Phys. Chem. Chem. Phys. 20, 25959–25966 (2018).
[Crossref]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]
Z. Yan, L. Qian, P. Zhan, and Z. Wang, “Generation of tunable double Fano resonances by plasmon hybridization in graphene-metal metamaterial,” Appl. Phys. Express 11, 072001 (2018).
[Crossref]
S. Zhan, Y. Peng, Z. He, B. Li, Z. Chen, H. Xu, and H. Li, “Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide,” Sci. Rep. 6, 22428 (2016).
[Crossref]
H. Xu, M. Zhao, C. Xiong, B. Zhang, M. Zheng, J. Zeng, H. Xia, and H. Li, “Dual plasmonically tunable slow light based on plasmon-induced transparency in planar graphene ribbon metamaterials,” Phys. Chem. Chem. Phys. 20, 25959–25966 (2018).
[Crossref]
Z. Gao, L. Wu, F. Gao, Y. Luo, and B. Zhang, “Spoof plasmonics: from metamaterial concept to topological description,” Adv. Mater. 30, 1706683 (2018).
[Crossref]
W. Zhu, Y. Fan, C. Li, R. Yang, S. Yan, Q. Fu, F. Zhang, C. Gu, and J. Li, “Realization of a near-infrared active Fano-resonant asymmetric metasurface by precisely controlling the phase transition of Ge2Sb2Te5,” Nanoscale 12, 8758–8767 (2020).
[Crossref]
M. ElKabbash, T. Letsou, S. A. Jalil, N. Hoffman, J. Zhang, J. Rutledge, A. R. Lininger, C.-H. Fann, M. Hinczewski, G. Strangi, and C. Guo, “Fano-resonant ultrathin film optical coatings,” Nat. Nanotechnol. 16, 440–446 (2021).
[Crossref]
X. Long, M. Zhang, Z. Xie, M. Tang, and L. Li, “Sharp Fano resonance induced by all-dielectric asymmetric metasurface,” Opt. Commun. 459, 124942 (2020).
[Crossref]
S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]
Y. Wen, Y. Sun, C. Deng, L. Huang, G. Hu, B. Yun, R. Zhang, and Y. Cui, “High sensitivity and FOM refractive index sensing based on Fano resonance in all-grating racetrack resonators,” Opt. Commun. 446, 141–146 (2019).
[Crossref]
B. Yun, R. Zhang, G. Hu, and Y. Cui, “Ultra sharp Fano resonances induced by coupling between plasmonic stub and circular cavity resonators,” Plasmonics 11, 1157–1162 (2016).
[Crossref]
B. Yun, G. Hu, R. Zhang, and C. Yiping, “Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator,” J. Opt. 18, 055002 (2016).
[Crossref]
S. Zhang, S.-J. Tang, S. Feng, Y.-F. Xiao, W. Cui, X. Wang, W. Sun, J. Ye, P. Han, X. Zhang, and Y. Zhang, “High-Q polymer microcavities integrated on a multicore fiber facet for vapor sensing,” Adv. Opt. Mater. 7, 1900602 (2019).
[Crossref]
S. Zhang, J. Li, R. Yu, W. Wang, and Y. Wu, “Optical multistability and Fano line-shape control via mode coupling in whispering-gallery-mode microresonator optomechanics,” Sci. Rep. 7, 39781 (2017).
[Crossref]
C. Zheng, T. Jia, H. Zhao, S. Zhang, D. Feng, and Z. Sun, “Low threshold tunable spaser based on multipolar Fano resonances in disk–ring plasmonic nanostructures,” J. Phys. D 49, 015101 (2015).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]
Y. Y. Huo, T. Q. Jia, Y. Zhang, H. Zhao, S. A. Zhang, D. H. Feng, and Z. R. Sun, “Spaser based on Fano resonance in a rod and concentric square ring-disk nanostructure,” Appl. Phys. Lett. 104, 113104 (2014).
[Crossref]
M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106, 181101 (2015).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]
S. I. Azzam, A. V. Kildishev, R.-M. Ma, C.-Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J.-L. Xu, and X. Zhang, “Ten years of spasers and plasmonic nanolasers,” Light Sci. Appl. 9, 90 (2020).
[Crossref]
C. De-Eknamkul, X. Zhang, M.-Q. Zhao, W. Huang, R. Liu, A. T. C. Johnson, and E. Cubukcu, “MoS2-enabled dual-mode optoelectronic biosensor using a water soluble variant of mu-opioid receptor for opioid peptide detection,” 2D Mater. 7, 014004 (2020).
[Crossref]
Z. Liu, Y. Xu, C.-Y. Ji, S. Chen, X. Li, X. Zhang, Y. Yao, and J. Li, “Fano-enhanced circular dichroism in deformable stereo metasurfaces,” Adv. Mater. 32, 1907077 (2020).
[Crossref]
S. Zhang, S.-J. Tang, S. Feng, Y.-F. Xiao, W. Cui, X. Wang, W. Sun, J. Ye, P. Han, X. Zhang, and Y. Zhang, “High-Q polymer microcavities integrated on a multicore fiber facet for vapor sensing,” Adv. Opt. Mater. 7, 1900602 (2019).
[Crossref]
J. Wang, X. Zhang, M. Yan, L. Yang, F. Hou, W. Sun, X. Zhang, L. Yuan, H. Xiao, and T. Wang, “Embedded whispering-gallery mode microsphere resonator in a tapered hollow annular core fiber,” Photon. Res. 6, 1124–1129 (2018).
[Crossref]
J. Wang, X. Zhang, M. Yan, L. Yang, F. Hou, W. Sun, X. Zhang, L. Yuan, H. Xiao, and T. Wang, “Embedded whispering-gallery mode microsphere resonator in a tapered hollow annular core fiber,” Photon. Res. 6, 1124–1129 (2018).
[Crossref]
K. L. Tsakmakidis, O. Hess, R. W. Boyd, and X. Zhang, “Ultraslow waves on the nanoscale,” Science 358, eaan5196 (2017).
[Crossref]
Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]
R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011).
[Crossref]
R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]
S. Zhang, S.-J. Tang, S. Feng, Y.-F. Xiao, W. Cui, X. Wang, W. Sun, J. Ye, P. Han, X. Zhang, and Y. Zhang, “High-Q polymer microcavities integrated on a multicore fiber facet for vapor sensing,” Adv. Opt. Mater. 7, 1900602 (2019).
[Crossref]
Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]
Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]
K.-H. Gu, X.-B. Yan, Y. Zhang, C.-B. Fu, Y.-M. Liu, X. Wang, and J.-H. Wu, “Tunable slow and fast light in an atom-assisted optomechanical system,” Opt. Commun. 338, 569–573 (2015).
[Crossref]
Y. Y. Huo, T. Q. Jia, Y. Zhang, H. Zhao, S. A. Zhang, D. H. Feng, and Z. R. Sun, “Spaser based on Fano resonance in a rod and concentric square ring-disk nanostructure,” Appl. Phys. Lett. 104, 113104 (2014).
[Crossref]
Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[Crossref]
W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]
G. Zhao, S. K. Özdemir, T. Wang, L. Xu, E. King, G.-L. Long, and L. Yang, “Raman lasing and Fano lineshapes in a packaged fiber-coupled whispering-gallery-mode microresonator,” Sci. Bull. 62(12), 875–878 (2017).
[Crossref]
C. Zheng, T. Jia, H. Zhao, S. Zhang, D. Feng, and Z. Sun, “Low threshold tunable spaser based on multipolar Fano resonances in disk–ring plasmonic nanostructures,” J. Phys. D 49, 015101 (2015).
[Crossref]
Y. Y. Huo, T. Q. Jia, Y. Zhang, H. Zhao, S. A. Zhang, D. H. Feng, and Z. R. Sun, “Spaser based on Fano resonance in a rod and concentric square ring-disk nanostructure,” Appl. Phys. Lett. 104, 113104 (2014).
[Crossref]
H. Xu, M. Zhao, C. Xiong, B. Zhang, M. Zheng, J. Zeng, H. Xia, and H. Li, “Dual plasmonically tunable slow light based on plasmon-induced transparency in planar graphene ribbon metamaterials,” Phys. Chem. Chem. Phys. 20, 25959–25966 (2018).
[Crossref]
C. De-Eknamkul, X. Zhang, M.-Q. Zhao, W. Huang, R. Liu, A. T. C. Johnson, and E. Cubukcu, “MoS2-enabled dual-mode optoelectronic biosensor using a water soluble variant of mu-opioid receptor for opioid peptide detection,” 2D Mater. 7, 014004 (2020).
[Crossref]
B. Ai, C. Song, L. Bradley, and Y. Zhao, “Strong Fano resonance excited in an array of nanoparticle-in-ring nanostructures for dual plasmonic sensor applications,” J. Phys. Chem. C 122, 20935–20944 (2018).
[Crossref]
Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]
B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]
N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency: sharp Fano resonances and slow light,” Opt. Photon. News 20, 22–27 (2009).
[Crossref]
C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]
C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]
B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]
J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012).
[Crossref]
Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[Crossref]
C. Zheng, T. Jia, H. Zhao, S. Zhang, D. Feng, and Z. Sun, “Low threshold tunable spaser based on multipolar Fano resonances in disk–ring plasmonic nanostructures,” J. Phys. D 49, 015101 (2015).
[Crossref]
G. Zheng, X. Zou, Y. Chen, L. Xu, and W. Rao, “Fano resonance in graphene-MoS2 heterostructure-based surface plasmon resonance biosensor and its potential applications,” Opt. Mater. 66, 171–178 (2017).
[Crossref]
H. Xu, M. Zhao, C. Xiong, B. Zhang, M. Zheng, J. Zeng, H. Xia, and H. Li, “Dual plasmonically tunable slow light based on plasmon-induced transparency in planar graphene ribbon metamaterials,” Phys. Chem. Chem. Phys. 20, 25959–25966 (2018).
[Crossref]
Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices,” Nano Energy 68, 104280 (2020).
[Crossref]
M.-H. Zhuge, C. Pan, Y. Zheng, J. Tang, S. Ullah, Y. Ma, and Q. Yang, “Wavelength-tunable micro/nanolasers,” Adv. Opt. Mater. 7, 1900275 (2019).
[Crossref]
S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90, 221101 (2007).
[Crossref]
Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, and X. Cheng, “Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices,” Nano Energy 68, 104280 (2020).
[Crossref]
G. Q. Lin, H. Yang, Y. Deng, D. Wu, X. Zhou, Y. Wu, G. Cao, J. Chen, W. Sun, and R. Zhou, “Ultra-compact high-sensitivity plasmonic sensor based on Fano resonance with symmetry breaking ring cavity,” Opt. Express 27, 33358–33367 (2019).
[Crossref]
W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]
G. Q. Lin, H. Yang, Y. Deng, D. Wu, X. Zhou, Y. Wu, G. Cao, J. Chen, W. Sun, and R. Zhou, “Ultra-compact high-sensitivity plasmonic sensor based on Fano resonance with symmetry breaking ring cavity,” Opt. Express 27, 33358–33367 (2019).
[Crossref]
V. G. Hadjiev, X. Zhou, T. Strohm, M. Cardona, Q. M. Lin, and C. W. Chu, “Strong superconductivity-induced phonon self-energy effects in HgBa2Ca3Cu4O10+δ,” Phys. Rev. B 58, 1043 (1998).
[Crossref]
M. Chen, Z. Xiao, X. Lu, F. Lv, and Y. Zhou, “Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial,” Carbon 159, 273–282 (2020).
[Crossref]
M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]
H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10, 709–714 (2016).
[Crossref]
J. Zhu, G. Wang, F. Jiang, Y. Qin, and H. Cong, “Temperature sensor of MoS2 based on hybrid plasmonic waveguides,” Plasmonics 14, 1863–1870 (2019).
[Crossref]
W. Zhu, Y. Fan, C. Li, R. Yang, S. Yan, Q. Fu, F. Zhang, C. Gu, and J. Li, “Realization of a near-infrared active Fano-resonant asymmetric metasurface by precisely controlling the phase transition of Ge2Sb2Te5,” Nanoscale 12, 8758–8767 (2020).
[Crossref]
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. Jan Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]
M.-H. Zhuge, C. Pan, Y. Zheng, J. Tang, S. Ullah, Y. Ma, and Q. Yang, “Wavelength-tunable micro/nanolasers,” Adv. Opt. Mater. 7, 1900275 (2019).
[Crossref]
G. Zheng, X. Zou, Y. Chen, L. Xu, and W. Rao, “Fano resonance in graphene-MoS2 heterostructure-based surface plasmon resonance biosensor and its potential applications,” Opt. Mater. 66, 171–178 (2017).
[Crossref]