Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Mode-division and spatial-division optical fiber sensors

Open Access Open Access

Abstract

The aim of this paper is to provide a comprehensive review of mode-division and spatial-division optical fiber sensors, mainly encompassing interferometers and advanced fiber gratings. Compared with their single-mode counterparts, which have a very mature field with many highly successful commercial applications, multimodal configurations have developed more recently with advances in fiber device fabrication and novel mode control devices. Multimodal fiber sensors considerably widen the range of possible sensing modalities and provide opportunities for increased accuracy and performance in conventional fiber sensing applications. Recent progress in these areas is attested by sharp increases in the number of publications and a rise in technology readiness level. In this paper, we first review the fundamental operating principles of such multimodal optical fiber sensors. We then report on the theoretical formalism and simulation procedures that allow for the prediction of the spectral changes and sensing response of these sensors. Finally, we discuss some recent cutting-edge applications, mainly in the physical and (bio)chemical fields. This paper provides both a step-by-step guide relevant for non-specialists entering in the field and a comprehensive review of advanced techniques for more skilled practitioners.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Whispering gallery mode sensors

Matthew R. Foreman, Jon D. Swaim, and Frank Vollmer
Adv. Opt. Photon. 7(2) 168-240 (2015)

Space-division multiplexing: the next frontier in optical communication

Guifang Li, Neng Bai, Ningbo Zhao, and Cen Xia
Adv. Opt. Photon. 6(4) 413-487 (2014)

Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications

Dora Juan Juan Hu and Ho Pui Ho
Adv. Opt. Photon. 9(2) 257-314 (2017)

References

  • View by:

  1. D. A. Krohn, T. W. MacDougal, and A. Mendez, Fiber Optic Sensors: Fundamentals and Applications, 4th ed. (SPIE Digital Library, 2015).
    [Crossref]
  2. I. Del Villar and I. R. Matias, Optical Fibre sensors: Fundamentals for Development of Optimized Devices (Wiley-IEEE Press, 2020).
  3. Z. He and Q. Liu, “Optical fiber distributed acoustic sensors: a review,” J. Lightwave Technol. 39 , 3671–3686 (2021).
    [Crossref]
  4. P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: review and perspective,” Appl. Phys. Rev. 6, 041302 (2019).
    [Crossref]
  5. I. Ashry, Y. Mao, A. Trichili, B. Wang, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “A review of using few-mode fibers for optical sensing,” IEEE Access 8, 179592–179605 (2020).
    [Crossref]
  6. S. Pevec and D. Donlagić, “Multiparameter fiber-optic sensors: a review,” Opt. Eng. 58 , 072009 (2019).
    [Crossref]
  7. A. Urrutia, I. Del Villar, P. Zubiate, and C. R. Zamarreño, “A comprehensive review of optical fiber refractometers: toward a standard comparative criterion,” Laser Photonics Rev. 13 , 1900094 (2019).
    [Crossref]
  8. C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407, 3883–3897 (2015).
    [Crossref]
  9. X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2015-2019),” Anal. Chem. 92, 397–430 (2020).
    [Crossref]
  10. L. Wang and S. LaRochelle, “Design of eight-mode polarization-maintaining few-mode fiber for multiple-input multiple-output-free spatial division multiplexing,” Opt. Lett. 40, 5846–5849 (2015).
    [Crossref]
  11. E. S. Manuylovich, V. V. Dvoyrin, and S. K. Turitsyn, “Fast mode decomposition in few-mode fibers,” Nat. Commun. 11, 5507 (2020).
    [Crossref]
  12. M. K. Annuar Zaini, Y.-S. Lee, K.-S. Lim, N. A. Mohd Nazal, M. H. Zohari, and H. Ahmad, “Axial stress profiling for few-mode fiber Bragg grating based on resonant wavelength shifts during etching process,” J. Opt. Soc. Am. B 34 , 1894–1898 (2017).
    [Crossref]
  13. F. Y. Chan, G. Mudhana, and P. Shum, “Comparison of bandwidth and sensitivity of long-period gratings in single-mode and few-mode fibers,” Appl. Opt. 54, 6558–6565 (2015).
    [Crossref]
  14. X. Gao, T. Ning, C. Zhang, J. Xu, J. Zheng, H. Lin, J. Li, L. Pei, and H. You, “A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing,” Opt. Commun. 454, 124441 (2020).
    [Crossref]
  15. L. Grüner-Nielsen, N. M. Mathew, and K. Rottwitt, “Characterization of few mode fibers and devices,” Opt. Fiber Technol. 52, 101972 (2019).
    [Crossref]
  16. S. A. Jacobs, “Failure of the weakly guiding approximation for few-mode fiber index profiles,” J. Lightwave Technol. 37, 5076–5082 (2019).
    [Crossref]
  17. W. Jin, Y. Xu, Y. Jiang, Y. Wu, S. Yao, S. Xiao, Y. Qi, W. Ren, and S. Jian, “Strain and temperature characteristics of the LP11 mode based on a few-mode fiber Bragg grating and core-offset splicing,” Laser Phys. 28 , 025103 (2018).
    [Crossref]
  18. X. Liang, Y. Li, Z. Geng, and Z. Liu, “Selective transverse mode operation of a fiber laser based on few-mode FBG for rotation sensing,” Opt. Express 27, 37964–37974 (2019).
    [Crossref]
  19. Z. Luo, H. Yu, Y. Zheng, Z. Zheng, Y. Li, and X. Jiang, “Selective mode excitation in a few-mode photonic crystal fiber for strain sensing with restrained temperature response,” J. Lightwave Technol. 38, 4560–4571 (2020).
    [Crossref]
  20. C. Wang, C. Pan, J. Xu, Z. Yang, J. Zhao, and Z. Huang, “Analysis of misalignment, twist, and bend in few-mode fibers using spatially and spectrally resolved imaging,” Opt. Fiber Technol. 56, 102205 (2020).
    [Crossref]
  21. Y. Xu, G. Ren, Y. Jiang, Y. Gao, H. Li, W. Jin, Y. Wu, Y. Shen, and S. Jian, “Bending effect characterization of individual higher-order modes in few-mode fibers,” Opt. Lett. 42, 3343–3346 (2017).
    [Crossref]
  22. M. Yang, J. Yang, C. Guan, M. Wang, P. Geng, Y. Shen, J. Zhang, J. Shi, J. Yang, and L. Yuan, “Refractive index sensor based on etched eccentric core few-mode fiber dual-mode interferometer,” Opt. Express 27, 28104–28113 (2019).
    [Crossref]
  23. J. Zhao, J. Xu, C. Wang, Y. Liu, and Z. Yang, “Experimental demonstration of multi-parameter sensing based on polarized interference of polarization-maintaining few-mode fibers,” Opt. Express 28, 20372–20378 (2020).
    [Crossref]
  24. Y. Zhao, C. Wang, G. Yin, B. Jiang, K. Zhou, C. Mou, Y. Liu, L. Zhang, and T. Wang, “Simultaneous directional curvature and temperature sensor based on a tilted few-mode fiber Bragg grating,” Appl. Opt. 57, 1671–1678 (2018).
    [Crossref]
  25. M. C. Alonso-Murias, D. Monzon-Hernandez, O. Rodriguez-Quiroz, J. E. Antonio-Lopez, A. Schulzgen, R. Amezcua-Correa, and J. Villatoro, “Long-range multicore optical fiber displacement sensor,” Opt. Lett. 46, 2224–2227 (2021).
    [Crossref]
  26. J. Amorebieta, A. Ortega-Gomez, G. Durana, R. Fernandez, E. Antonio-Lopez, A. Schulzgen, J. Zubia, R. Amezcua-Correa, and J. Villatoro, “Compact omnidirectional multicore fiber-based vector bending sensor,” Sci. Rep. 11, 5989 (2021).
    [Crossref]
  27. B. J. Ávila, J. N. Hernández, S. M. Toxqui Rodríguez, and B. M. Rodríguez-Lara, “Symmetric supermodes in cyclic multicore fibers,” OSA Continuum 2 , 515–522 (2019).
    [Crossref]
  28. D. Barrera, J. Madrigal, and S. Sales, “Tilted fiber Bragg gratings in multicore optical fibers for optical sensing,” Opt. Lett. 42, 1460–1463 (2017).
    [Crossref]
  29. D. Barrera, J. Madrigal, and S. Sales, “Long period gratings in multicore optical fibers for directional curvature sensor implementation,” J. Lightwave Technol. 36, 1063–1068 (2018).
    [Crossref]
  30. M. Becker, A. Lorenz, T. Elsmann, I. Latka, A. Schwuchow, S. Dochow, R. Spittel, J. Kobelke, J. Bierlich, K. Schuster, M. Rothhardt, and H. Bartelt, “Single-mode multicore fibers with integrated Bragg filters,” J. Lightwave Technol. 34, 4572–4578 (2016).
    [Crossref]
  31. D. Budnicki, D. Budnicki, I. Parola, Ł Szostkiewicz, K. Markiewicz, Z. Hołdyński, G. Wojcik, M. Makara, K. Poturaj, M. Kuklińska, P. Mergo, M. Napierała, and T. Nasiłowski, “All-fiber vector bending sensor based on a multicore fiber with asymmetric air-hole structure,” J. Lightwave Technol. 38, 6685–6690 (2020).
    [Crossref]
  32. G. Capilla-Gonzalez, D. A. May-Arrioja, D. Lopez-Cortes, and J. R. Guzman-Sepulveda, “Stress homogenization effect in multicore fiber optic bending sensors,” Appl. Opt. 56, 2273–2279 (2017).
    [Crossref]
  33. J. Cui, H. Luo, J. Lu, X. Cheng, and H. Y. Tam, “Random forest assisted vector displacement sensor based on a multicore fiber,” Opt. Express 29, 15852–15864 (2021).
    [Crossref]
  34. A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J 8, 1292–1298 (2008).
    [Crossref]
  35. L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8, 1–8 (2016).
    [Crossref]
  36. T. A. Goebel, J. Nold, C. Hupel, S. Kuhn, N. Haarlammert, T. Schreiber, C. Matzdorf, T. O. Imogore, R. G. Krämer, D. Richter, A. Tünnermann, and S. Nolte, “Ultrashort pulse written fiber Bragg gratings as narrowband filters in multicore fibers,” Appl. Opt. 60 , 43–51 (2021).
    [Crossref]
  37. S. Guvenc Kilic, Y. Zhu, Q. Sheng, M. Naci Inci, and M. Han, “Refractometer with etched chirped fiber Bragg grating Fabry–Perot interferometer in multicore fiber,” IEEE Photonics Technol. Lett. 31, 575–578 (2019).
    [Crossref]
  38. W. Hu, C. Li, S. Cheng, F. Mumtaz, C. Du, and M. Yang, “Etched multicore fiber Bragg gratings for refractive index sensing with temperature in-line compensation,” OSA Continuum 3 , 1058–1067 (2020).
    [Crossref]
  39. P. Li, P. Tian, C. Guan, Z. Zhu, Y. Li, J. Yang, J. Shi, and L. Yuan, “Heterogeneous double period array multicore fiber and its application in Bragg grating sensor,” IEEE Sens. J. 19, 6193–6196 (2019).
    [Crossref]
  40. Y. Liu, A. Zhou, and L. Yuan, “Gelatin-coated Michelson interferometric humidity sensor based on a multicore fiber with helical structure,” J. Lightwave Technol. 37, 2452–2457 (2019).
    [Crossref]
  41. J. Madrigal, D. Barrera, and S. Sales, “Refractive index and temperature sensing using inter-core crosstalk in multicore fibers,” J. Lightwave Technol. 37, 4703–4709 (2019).
    [Crossref]
  42. D. A. May-Arrioja and J. R. Guzman-Sepulveda, “Highly sensitive fiber optic refractive index sensor using multicore coupled structures,” J. Lightwave Technol. 35, 2695–2701 (2017).
    [Crossref]
  43. F. Mumtaz, P. Cheng, C. Li, S. Cheng, C. Du, M. Yang, Y. Dai, and W. Hu, “A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer,” IEEE Sens. J. 20, 7074–7081 (2020).
    [Crossref]
  44. A. V. Newkirk, J. E. Antonio-Lopez, A. Velazquez-Benitez, J. Albert, R. Amezcua-Correa, and A. Schulzgen, “Bending sensor combining multicore fiber with a mode-selective photonic lantern,” Opt. Lett. 40, 5188–5191 (2015).
    [Crossref]
  45. D. Paloschi, K. A. Bronnikov, S. Korganbayev, A. A. Wolf, A. Dostovalov, and P. Saccomandi, “3D shape sensing with multicore optical fibers: transformation matrices versus Frenet-Serret equations for real-time application,” IEEE Sens. J. 21, 4599–4609 (2021).
    [Crossref]
  46. T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, F. Yamamoto, and K. Nakajima, “Fiber twisting- and bending-induced adiabatic/nonadiabatic super-mode transition in coupled multicore fiber,” J. Lightwave Technol. 34, 1228–1237 (2016).
    [Crossref]
  47. A. Van Newkirk, J. E. Antonio-Lopez, G. Salceda-Delgado, M. U. Piracha, R. Amezcua-Correa, and A. Schulzgen, “Multicore fiber sensors for simultaneous measurement of force and temperature,” IEEE Photonics Technol. Lett. 27, 1523–1526 (2015).
    [Crossref]
  48. J. Villatoro, E. Antonio-Lopez, A. Schulzgen, and R. Amezcua-Correa, “Miniature multicore optical fiber vibration sensor,” Opt. Lett. 42, 2022–2025 (2017).
    [Crossref]
  49. R. Wang, M. Tang, S. Fu, Z. Feng, W. Tong, and D. Liu, “Spatially arrayed long period gratings in multicore fiber by programmable electrical arc discharge,” IEEE Photonics J. 9, 4500310 (2017).
    [Crossref]
  50. P. S. Westbrook, T. Kremp, K. S. Feder, W. Ko, E. M. Monberg, H. Wu, D. A. Simoff, T. F. Taunay, and R. M. Ortiz, “Continuous multicore optical fiber grating arrays for distributed sensing applications,” J. Lightwave Technol. 35, 1248–1252 (2017).
    [Crossref]
  51. S. Xiang, H. Xiongwei, Y. Luyun, D. Nengli, W. Jianjun, Z. Fangfang, P. Jingang, L. Haiqing, and L. Jinyan, “Helical long-period grating manufactured with a CO2 laser on multicore fiber,” Opt. Express 25, 10405–10412 (2017).
    [Crossref]
  52. M. S. Yoon, S. B. Lee, and Y. G. Han, “In-line interferometer based on intermodal coupling of a multicore fiber,” Opt. Express 23, 18316–18322 (2015).
    [Crossref]
  53. Z. Zhao, Z. Liu, M. Tang, S. Fu, L. Wang, N. Guo, C. Jin, H. Y. Tam, and C. Lu, “Robust in-fiber spatial interferometer using multicore fiber for vibration detection,” Opt. Express 26, 29629–29637 (2018).
    [Crossref]
  54. D. Zheng, J. Madrigal, D. Barrera, S. Sales, and J. Capmany, “Microwave photonic filtering for interrogating FBG-based multicore fiber curvature sensor,” IEEE Photonics Technol. Lett. 29, 1707–1710 (2017).
    [Crossref]
  55. R. Zhou, F. Chen, S. Li, R. Wang, and X. Qiao, “Three-dimensional vector accelerometer using a multicore fiber inscribed with three FBGs,” J. Lightwave Technol. 39, 3244–3250 (2021).
    [Crossref]
  56. C. Tsao, Optical Fibre Waveguide Analysis (Oxford , 1992).
  57. C.L. Chen, Foundations for Guided-Wave Optics (Wiley, 2007).
  58. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed., (Academic Press , 2006).
  59. A. W. Snyder and J. Love, Optical waveguide theory (Springer Science & Business Media , 2012).
  60. W. Zhou, Y. Zhou, and J. Albert, “A true fiber optic refractometer,” Laser Photonics Rev. 11, 1600157 (2017).
    [Crossref]
  61. C. Chen, P. Berini, D. Feng, S. Tanev, and V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express 7, 260–272 (2000).
    [Crossref]
  62. E. Anemogiannis and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344–1351 (1992).
    [Crossref]
  63. A. V. Lavrinenko, J. Laegsgaard, N. Gregersen, F. Schmidt, and T. Søndergaard, Numerical Methods in Photonics (CRC Press, 2017).
  64. F. L. Teixeira and W. C. Chew, “PML-FDTD in cylindrical and spherical grids,” IEEE Microw. and Guided Waves Lett. 7 , 285–287 (1997).
    [Crossref]
  65. Y.-C. Lu, L. Yang, W.-P. Huang, and S.-S. Jian, “Improved full-vector finite-difference complex mode solver for optical waveguides of circular symmetry,” J. Lightwave Technol. 26(13), 1868–1876 (2008).
    [Crossref]
  66. Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10, 853–864 (2002).
    [Crossref]
  67. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed., Chap. 9 (Princeton U. Press, 2008) ISBN:9780691124568
  68. I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
    [Crossref]
  69. Z. Li and H. Zhu, “Fiber-optic surface waveguide modes excited by inter/intra mode transition for refractometric sensitivity enhancement,” IEEE J. Sel. Top. Quantum Electron. 27, 5600308 (2021).
    [Crossref]
  70. F. Liu, X. Zhang, T. Guo, and J. Albert, “Optical detection of the percolation threshold of nanoscale silver coatings with optical fiber gratings,” APL Photonics 5, 076101 (2020).
    [Crossref]
  71. W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C 118, 670–678 (2014).
    [Crossref]
  72. W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express 22, 31665–31676 (2014).
    [Crossref]
  73. U. Kreibig and M. Vollmer, Optical Properties of Metal clusters, Vol. 25 of Springer Series in Materials Science (Springer, 1995)
  74. J. U. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19 , 325–341 (2011).
    [Crossref]
  75. J. U. Thomas, N. Jovanovic, R. G. Krämer, G. D. Marshall, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings II: complete vectorial analysis,” Opt. Express 20 , 21434–21449 (2012).
    [Crossref]
  76. F. Shen and T. Zhang, “Numerical analyses of the polarization dependent cladding mode coupling in localized fiber Bragg gratings,” IEEE Access 9, 6689–6695 (2021).
    [Crossref]
  77. Z. Yan, H. Wang, C. Wang, Z. Sun, G. Yin, K. Zhou, Y. Wang, W. Zhao, and L. Zhang, “Theoretical and experimental analysis of excessively tilted fiber gratings,” Opt. Express 24, 12107–12115 (2016).
    [Crossref]
  78. J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7, 83–108 (2013).
    [Crossref]
  79. M. Z. Alam and J. Albert, “Selective excitation of radially and azimuthally polarized optical fiber cladding modes,” J. Lightwave Technol. 31, 3167–3175 (2013).
    [Crossref]
  80. J. Bucaro and E. Carome, “Single fiber interferometric acoustic sensor,” Appl. Opt. 17, 330–331 (1978).
    [Crossref]
  81. B. Y. Kim, J. N. Blake, S.-Y. Huang, and H. J. Shaw, “Use of highly elliptical core fibers for two-mode fiber devices,” Opt. Lett. 12, 729–731 (1987).
    [Crossref]
  82. G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett. 37, 1974–1976 (2012).
    [Crossref]
  83. H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 40, 5042–5045 (2015).
    [Crossref]
  84. I. Hernández-Romano, D. Monzón-Hernández, C. Moreno-Hernández, D. Moreno-Hernandez, and J. Villatoro, “Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer,” IEEE Photonics Techn. Lett. 27, 2591–2594 (2015).
    [Crossref]
  85. M. Arjmand, H. Saghafifar, M. Alijanianzadeh, and M. Soltanolkotabi, “A sensitive tapered-fiber optic biosensor for the label-free detection of organophosphate pesticides,” Sens. Actuators B 249, 523–532 (2017).
    [Crossref]
  86. A. D. D. Le, J. Hwang, M. Yusuf, K. H. Park, S. Park, and J. Kim, “Simultaneous measurement of humidity and temperature with CYTOP-reduced graphene oxide-overlaid two-mode optical fiber sensor,” Sens. Actuators B 298, 126841 (2019).
    [Crossref]
  87. Y. Li, H. Ma, L. Gan, Q. Liu, Z. Yan, D. Liu, and Q. Sun, “Immobilized optical fiber microprobe for selective and high sensitive glucose detection,” Sens. Actuators B 255, 3004–3010 (2018).
    [Crossref]
  88. D. Sun, S. Xu, Y. Fu, and J. Ma, “Fast response microfiber-optic pH sensor based on a polyaniline sensing layer,” Appl. Opt. 59, 11261–11265 (2020).
    [Crossref]
  89. P. Wang, H. Zhao, X. Wang, G. Farrell, and G. Brambilla, “A review of multimode interference in tapered optical fibers and related applications,” Sensors 18, 858 (2018).
    [Crossref]
  90. S. Korposh, S. W. James, S.-W. Lee, and R. P. Tatam, “Tapered optical fibre sensors: current trends and future perspectives,” Sensors 19, 2294 (2019).
    [Crossref]
  91. P. R. Horche, M. López-Amo, M. A. Muriel, and J. A. Martin-Pereda, “Spectral behavior of a low-cost all-fiber component based on untapered multifiber unions,” IEEE Photonics Technol. Lett. 1, 184–187 (1989).
    [Crossref]
  92. A. Kumar, R. K. Varshney, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
    [Crossref]
  93. Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129 (2006).
    [Crossref]
  94. Q. Wang, G. Farrell, and W. Yan, “Investigation on single-mode–multimode–single-mode fiber structure,” J. Lightwave Technol. 26, 512–519 (2008).
    [Crossref]
  95. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Investigation of single-mode–multimode–single-mode and single-mode–tapered-multimode–single-mode fiber structures and their application for refractive index sensing,” J. Opt. Soc. Am. B 28, 1180–1186 (2011).
    [Crossref]
  96. J. Antonio-Lopez, D. May-Arrioja, and P. LiKamWa, “Optofluidic tuning of multimode interference fiber filters,” in Enabling Photonics Technologies for Defense, Security, and Aerospace Applications V (SPIE , 2009 ), p. 73390D .
  97. Y. Zhao, J. Zhao, and Q. Zhao, “Review of no-core optical fiber sensor and applications,” Sens. Actuators, A 313, 112160 (2020).
    [Crossref]
  98. K. Wang, X. Dong, M. H. Köhler, P. Kienle, Q. Bian, M. Jakobi, and A. W. Koch, “Advances in optical fiber sensors based on multimode interference (MMI): a review,” IEEE Sens. J. 21, 132–142 (2020).
    [Crossref]
  99. Q. Wu, Y. Qu, J. Liu, J. Yuan, S.-P. Wan, T. Wu, X.-D. He, B. Liub, D. Liuc, and Y. Ma, “Singlemode-multimode-singlemode fiber structures for sensing applications – a review,” IEEE Sens. J. 21 , 12734–12751 (2021).
    [Crossref]
  100. J. R. Guzmán-Sepúlveda, R. Guzmán-Cabrera, and A. A. Castillo-Guzmán, “Optical sensing using fiber-optic multimode interference devices: a review of nonconventional sensing schemes,” Sensors 21, 1862 (2021).
    [Crossref]
  101. R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283, 3149–3152 (2010).
    [Crossref]
  102. A. M. Hatta, Y. Semenova, G. Rajan, P. Wang, J. Zheng, and G. Farrell, “Analysis of temperature dependence for a ratiometric wavelength measurement system using SMS fiber structure based edge filters,” Opt. Commun. 283, 1291–1295 (2010).
    [Crossref]
  103. Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Bent SMS fibre structure for temperature measurement,” Electron. Lett. 46, 1129–1130 (2010).
    [Crossref]
  104. A. M. Hatta, K. Indriawati, T. Bestariyan, T. Humada, and Sekartedjo, “SMS fiber structure for temperature measurement using an OTDR,” Photonic Sens. 3, 262–266 (2013).
    [Crossref]
  105. Y. Zhang, X. Tian, L. Xue, Q. Zhang, L. Yang, and B. Zhu, “Super-high sensitivity of fiber temperature sensor based on leaky-mode bent SMS structure,” IEEE Photonics Technol. Lett. 25, 560–563 (2013).
    [Crossref]
  106. M. Kumar, A. Kumar, and S. M. Tripathi, “A comparison of temperature sensing characteristics of SMS structures using step and graded index multimode fibers,” Opt. Commun. 312, 222–226 (2014).
    [Crossref]
  107. X. Q. Lei, Y. T. Yu, W. J. Feng, B. J. Peng, and X. D. Li, “A novel fiber temperature sensor with liquid-crystal filled SM-NC-SM structure,” J. Optoelectron. Laser 26, 2278–2282 (2015).
    [Crossref]
  108. Q. Wu, M. Yang, J. Yuan, H. P. Chan, Y. Ma, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “The use of a bend singlemode-multimode-singlemode (SMS) fibre structure for vibration sensing,” Opt. Laser Technol. 63, 29–33 (2014).
    [Crossref]
  109. J. W. Costa, M. A. R. Franco, V. A. Serrão, C. M. B. Cordeiro, and M. T. R. Giraldi, “Macrobending SMS fiber-optic anemometer and flow sensor,” Opt. Fiber Technol. 52, 101981 (2019).
    [Crossref]
  110. Z. Shuo, D. Sifan, W. Zemin, S. Cuiting, C. Xudong, M. Yiwei, Z. Lei, L. Chunlian, G. Tao, Y. Wenlei, and Y. Libo, “A miniature SMS-LPG bending sensor with high sensitivity based on multimode fiber embedded-LPG,” Sens. Actuators, A 295, 31–36 (2019).
    [Crossref]
  111. A. M. Hatta, H. E. Permana, H. Setijono, A. Kusumawardhani, and Sekartedjo, “Strain measurement based on SMS fiber structure sensor and OTDR,” Microw. Opt. Technol. Lett. 55, 2576–2578 (2013).
    [Crossref]
  112. Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and W. Ni, “High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure,” Opt. Commun. 405, 416–420 (2017).
    [Crossref]
  113. K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightwave Technol. 34, 55–66 (2016).
    [Crossref]
  114. J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express 20, 2967–2973 (2012).
    [Crossref]
  115. I. Floris, J. M. Adam, P. A. Calderón, and S. Sales, “Fiber optic shape sensors: a comprehensive review,” Opt. Lasers Eng. 139, 106508 (2021).
    [Crossref]
  116. A. Azmi, A. Abdullah, M. M. Noor, M. Ibrahim, R. R. Ibrahim, T. Tan, and J. Zhang, “Dynamic bending and rotation sensing based on high coherence interferometry in multicore fiber,” Opt. Laser Technol. 135, 106716 (2021).
    [Crossref]
  117. Z. Zhao, L. Shen, Y. Dang, C. Lu, and M. Tang, “Enabling long range distributed vibration sensing using multicore fiber interferometers,” Opt. Lett. 46, 3685–3688 (2021).
    [Crossref]
  118. D. Yan, Z. Tian, N.-K. Chen, L. Zhang, Y. Yao, Y. Xie, P. P. Shum, K. T. Grattan, and D. Wang, “Observation of split evanescent field distributions in tapered multicore fibers for multiline nanoparticle trapping and microsensing,” Opt. Express 29, 9532–9543 (2021).
    [Crossref]
  119. W. Chen, Y. Zhang, H. Yang, Y. Qiu, H. Li, Z. Chen, and C. Yu, “Non-invasive measurement of vital signs based on seven-core fiber interferometer,” IEEE Sens. J. 21, 10703–10710 (2021).
    [Crossref]
  120. Z. Li, Y.-X. Zhang, W.-G. Zhang, L.-X. Kong, Y. Yue, and T.-Y. Yan, “Parallelized fiber Michelson interferometers with advanced curvature sensitivity plus abated temperature crosstalk,” Opt. Lett. 45, 4996–4999 (2020).
    [Crossref]
  121. D. Guo, L. Wu, H. Yu, A. Zhou, Q. Li, F. Mumtaz, C. Du, and W. Hu, “Tapered multicore fiber interferometer for refractive index sensing with graphene enhancement,” Appl. Opt. 59, 3927–3932 (2020).
    [Crossref]
  122. Y. Chunxia, D. Hui, D. Wei, and X. Chaowei, “Weakly-coupled multicore optical fiber taper-based high-temperature sensor,” Sens. Actuators A 280, 139–144 (2018).
    [Crossref]
  123. C. Zhang, T. Ning, J. Li, L. Pei, C. Li, and H. Lin, “Refractive index sensor based on tapered multicore fiber,” Opt. Fiber Technol. 33, 71–76 (2017).
    [Crossref]
  124. R. Zhou, X. Qiao, R. Wang, F. Chen, and W. Ma, “An optical fiber sensor based on lateral-offset spliced seven-core fiber for bending and stretching strain measurement,” IEEE Sens. J. 20, 5915–5920 (2020).
    [Crossref]
  125. C. Zhang, T. Ning, J. Zheng, X. Gao, H. Lin, J. Li, L. Pei, and X. Wen, “Miniature optical fiber temperature sensor based on FMF-SCF structure,” Opt. Fiber Technol. 41, 217–221 (2018).
    [Crossref]
  126. T. A. Birks, I. Gris-Sanchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomsons, “The photonic lantern,” Adv. Opt. Photon. 7, 107–167 (2015).
    [Crossref]
  127. S. Lacroix, F. Gonthier, and J. Bures, “Modeling of symmetric 2 × 2 fused-fiber couplers,” Appl. Opt. 33, 8361–8369 (1994).
    [Crossref]
  128. A. Radosavljević, A. Daničić, J. Petrovic, A. Maluckov, and L. Hadžievski, “Coherent light propagation through multicore optical fibers with linearly coupled cores,” J. Opt. Soc. Am. B 32 , 2520–2527 (2015).
    [Crossref]
  129. W. Ren, Z. Tan, and G. Ren, “Analytical formulation of supermodes in multicore fibers with hexagonally distributed cores,” IEEE Photon. J. 7, 7100311 (2015).
    [Crossref]
  130. J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000 °C,” Opt. Lett. 39, 4309–4312 (2014).
    [Crossref]
  131. J. A. Flores-Bravo, R. Fernández, E. A. Lopez, A. Schülzgen, A. Amezcua-Correa, and J. Villatoro, “Simultaneous sensing of refractive index and temperature with supermode interference,” J. Lightwave Technol. 39, 7351–7357 (2021)
  132. J. Amorebieta, G. Durana, A. Ortega-Gomez, R. Fernández, J. Velasco, I. S. de Ocáriz, J. Zubia, J. E. Antonio-López, A. Schülzgen, and R. Amezcua-Correa, “Packaged multi-core fiber interferometer for high-temperature sensing,” J. Lightwave Technol. 37, 2328–2334 (2019).
    [Crossref]
  133. J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41, 832–835 (2016).
    [Crossref]
  134. J. Amorebieta, A. Ortega-Gomez, G. Durana, R. Fernández, E. Antonio-Lopez, A. Schülzgen, J. Zubia, R. Amezcua-Correa, and J. Villatoro, “Highly sensitive multicore fiber accelerometer for low frequency vibration sensing,” Sci. Rep. 10, 1–11 (2020).
    [Crossref]
  135. N. Cuando-Espitia, M. A. Fuentes-Fuentes, D. A. May-Arrioja, I. Hernández-Romano, R. Martínez-Manuel, and M. Torres-Cisneros, “Dual-point refractive index measurements using coupled seven-core fibers,” J. Lightwave Technol. 39, 310–319 (2021).
    [Crossref]
  136. Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “In-line flat-top comb filter based on a cascaded all-solid photonic bandgap fiber intermodal interferometer,” Opt. Express 21, 17352–17358 (2013).
    [Crossref]
  137. S. Dong, B. Dong, C. Yu, and Y. Guo, “High sensitivity optical fiber curvature sensor based on cascaded fiber interferometer,” J. Lightwave Technol. 36, 1125–1130 (2017).
    [Crossref]
  138. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18 , 22747–22761 (2010).
    [Crossref]
  139. F. Wei, D. Liu, Z. Wang, Z. Wang, G. Farrell, Q. Wu, G.-D. Peng, and Y. Semenova, “Enhancing the visibility of Vernier effect in a tri-microfiber coupler fiber loop interferometer for ultrasensitive refractive index and temperature sensing,” J. LightwaveTechnol. 39, 1523–1529 (2021).
    [Crossref]
  140. J. Villatoro, “Phase-shifted modal interferometers for high-accuracy optical fiber sensing,” Opt. Lett. 45, 21–24 (2020).
    [Crossref]
  141. J. Villatoro, J. Amorebieta, A. Ortega-Gomez, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Composed multicore fiber structure for direction-sensitive curvature monitoring,” APL Photonics 5, 070801 (2020).
    [Crossref]
  142. I. Del Villar, C. R. Zamarreno, M. Hernaez, F. J. Arregui, and I. R. Matias, “Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications,” J. Lightwave Technol. 28, 111–117 (2010).
    [Crossref]
  143. E. I. Golant, A. B. Pashkovskii, and K. M. Golant, “Lossy mode resonance in an etched-out optical fiber taper covered by a thin ITO layer,” Appl. Opt. 59, 9254–9258 (2020).
    [Crossref]
  144. F. Chiavaioli and D. Janner, “Fiber optic sensing with lossy mode resonances: applications and perspectives,” J. Lightwave Technol. 39 , 3855–3870 (2021).
    [Crossref]
  145. F. Esposito, L. Sansone, A. Srivastava, F. Baldini, S. Campopiano, F. Chiavaioli, M. Giordano, A. Giannetti, and A. Iadicicco, “Long period grating in double cladding fiber coated with graphene oxide as high-performance optical platform for biosensing,” Biosens. Bioelectron. 172, 112747 (2021).
    [Crossref]
  146. D. Villar, C. R. Zamarreño, P. Sanchez, M. Hernaez, C. F. Valdivielso, F. J. Arregui, and I. R. Matias, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12, 095503 (2010).
    [Crossref]
  147. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed., (Oxford U. Press, 2006).
  148. K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270–1272 (1990).
    [Crossref]
  149. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bahtia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
    [Crossref]
  150. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [Crossref]
  151. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 15, 823–825 (1989).
    [Crossref]
  152. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [Crossref]
  153. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11, 352–354 (1999).
    [Crossref]
  154. A. Theodosiou, A. Lacraz, A. Stassis, C. Koutsides, M. Komodromos, and K. Kalli, “Plane-by-plane femtosecond laser inscription method for single-peak Bragg gratings in multimode CYTOP polymer optical fiber,” J. Lightwave Technol. 35, 5404–5410 (2017).
    [Crossref]
  155. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47, 271–272 (2011).
    [Crossref]
  156. G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7, 286–295 (2017).
    [Crossref]
  157. T. Guo, Á González-vila, M. Loyez, and C. Caucheteur, “Plasmonic optical fiber grating immunosensing: a review,” Sensors 17, 1–19 (2017).
    [Crossref]
  158. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
    [Crossref]
  159. C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, “Characteristics of hydrogenated fiber Bragg gratings,” Appl. Phys. A 64, 191–197 (1997).
    [Crossref]
  160. K. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
    [Crossref]
  161. C. G. Askins, M. A. Putnam, G. M. Williams, and E. J. Friebele, “Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower,” Opt. Lett. 19, 147–149 (1994).
    [Crossref]
  162. K. Oi, F. Barnier, and M. Obara, “Fabrication of fiber Bragg grating by femtosecond laser interferometry, ” in 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE/OSA, 2001), pp. 776–777 .
  163. A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Opt. Lett. 28, 2171–2173 (2003).
    [Crossref]
  164. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. G. H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
    [Crossref]
  165. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40 , 1170–1172 (2004).
    [Crossref]
  166. A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15 , 1442–1463 (1997).
    [Crossref]
  167. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
    [Crossref]
  168. J. L. Archambault, L. Reekie, and P. S. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
    [Crossref]
  169. B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B 60, 27–34 (1999).
    [Crossref]
  170. C. Caucheteur, M. Debliquy, D. Lahem, and P. Mégret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16, 16854–16859 (2008).
    [Crossref]
  171. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [Crossref]
  172. V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4, 457–466 (1999).
    [Crossref]
  173. T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11, 2100–2105 (1994).
    [Crossref]
  174. C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” Photon. Technol. Lett. 19 , 966–968 (2007).
    [Crossref]
  175. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20, 255–266 (2002).
    [Crossref]
  176. K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Low thermal sensitivity grating devices based on ex-45° tilting structure capable of forward-propagating cladding modes coupling,” J. Lightwave Technol. 24, 5087–5094 (2006).
    [Crossref]
  177. Z. Yan, Q. Sun, C. Wang, Z. Sun, C. Mou, K. Zhou, D. Liu, and L. Zhang, “Refractive index and temperature sensitivity characterization of excessively tilted fiber grating,” Opt. Express 25, 3336–3346 (2017).
    [Crossref]
  178. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Light.Technol. 21 , 218–227 (2003).
    [Crossref]
  179. W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating,” Opt. Lett. 40, 1713 (2015).
    [Crossref]
  180. C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
    [Crossref]
  181. D. Feng, J. Albert, Y. Jiang, C. Liu, B. Jiang, H. Wang, and J. Zhao, “Symmetry selective cladding modes coupling in ultrafast-written fiber Bragg gratings in two-mode fiber,” Opt. Express 27, 18410–18420 (2019).
    [Crossref]
  182. A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Femtosecond laser inscribed tilted gratings for leaky mode excitation in optical fibers,” J. Lightwave Technol. 38 , 1921–1928 (2020).
    [Crossref]
  183. J. W. Fleming, “Dispersion in GeO2 -SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [Crossref]
  184. J. Albert, “Permanent photoinduced refractive-index changes for Bragg gratings in silicate glass waveguides and fiber,” MRS Bull. 23 , 36–41 (1998).
    [Crossref]
  185. X. Zhang, S. Cai, F. Liu, H. Chen, P. Yan, Y. Yuan, T. Guo, and J. Albert, “In situ determination of the complex permittivity of ultrathin H2-infused palladium coatings for plasmonic fiber optic sensors in the near infrared,” J. Mater. Chem. C 6, 5161–5170 (2018).
    [Crossref]
  186. F. Liu and J. Albert, “40 GHz-rate all-optical cross-modulation of core-guided near infrared light in single mode fiber by surface plasmons on gold-coated tilted fiber Bragg gratings,” APL Photonics 4, 126104 (2019).
    [Crossref]
  187. F. Liu, X. Zhang, K. Li, T. Guo, A. Ianoul, and J. Albert, “Discrimination of bulk and surface refractive index change in plasmonic sensors with narrow bandwidth resonance combs,” ACS Sens. 6, 3013–3023 (2021).
    [Crossref]
  188. A. Ivanov, “Multi-parameter fiber optic sensors for structural health monitoring,” M.A.Sc. thesis (Carleton University, 2008).
  189. Commercial literature from Ibsen Photonics , https://ibsen.com/products/interrogation-monitors/i-mon-usb/i-mon-256-512-usb/ .
  190. S. D. Dyer, P. A. Williams, R. J. Espejo, J. D. Kofler, and S. M. Etzel, “Fundamental limits in fiber Bragg grating peak wavelength measurements (invited paper),” Proc. SPIE 5855, 88–93 (2005).
    [Crossref]
  191. F. Liu, X. Tong, C. Zhang, C. Deng, Q. Xiong, Z. Zheng, and P. Wang, “Multi-peak detection algorithm based on the Hilbert transform for optical FBG sensing,” Opt. Fiber Technol. 45, 47–52 (2018).
    [Crossref]
  192. Y. Yang, J. Wu, M. Wang, Q. Wang, Q. Yu, and K. P. Chen, “Fast demodulation of fiber Bragg grating wavelength from low-resolution spectral measurements using Buneman frequency estimation,” J. Lightwave Technol. 38, 5142–5148 (2020).
    [Crossref]
  193. D. Ganziy, B. Rose, and O. Bang, “Compact multichannel high-resolution micro-electro-mechanical systems-based interrogator for Fiber Bragg grating sensing,” Appl. Opt. 56, 3622–3627 (2017).
    [Crossref]
  194. M. P. Fernandez, L. A. Bulus Rossini, J. L. Cruz, M. V. Andres, and P. A. Costanzo Caso, “High-speed and high-resolution interrogation of FBG sensors using wavelength-to-time mapping and gaussian filters,” Opt. Express 27, 36815–36823 (2019).
    [Crossref]
  195. J. Wang, T. Huang, F. Duan, Q. Cheng, F. Zhang, and X. Qu, “Fast peak-tracking method for FBG reflection spectrum and nonlinear error compensation,” Opt. Lett. 45, 451–454 (2020).
    [Crossref]
  196. M. Shaimerdenova, A. Bekmurzayeva, M. Sypabekova, and D. Tosi, “Interrogation of coarsely sampled tilted fiber Bragg grating (TFBG) sensors with KLT,” Opt. Express 25, 33487–33496 (2017).
    [Crossref]
  197. F. Ouellette, J. Li, Z. Ou, and J. Albert, “High-resolution interrogation of tilted fiber Bragg gratings using an extended range dual wavelength differential detection,” Opt. Express 28, 14662–14676 (2020).
    [Crossref]
  198. K. A. Tomyshev, D. K. Tazhetdinova, E. S. Manuilovich, and O. V. Butov, “High-resolution fiber optic surface plasmon resonance sensor for biomedical applications,” J. Appl. Phys. 124, 113106 (2018).
    [Crossref]
  199. K. A. Tomyshev, E. S. Manuilovich, D. K. Tazhetdinova, E. I. Dolzhenko, and O. V. Butov, “High-precision data analysis for TFBG-assisted refractometer,” Sens. Act. A 308, 112016 (2020).
    [Crossref]
  200. T. Gang, F. Liu, M. Hu, and J. Albert, “Integrated differential area method for variable sensitivity interrogation of tilted fiber Bragg grating sensors,” J. Lightwave Technol. 37, 4531–4536 (2019).
    [Crossref]
  201. L. Fazzi and R. M. Groves, “Demodulation of a tilted fibre Bragg grating transmission signal using α-shape modified Delaunay triangulation,” Measurement 166, 108197 (2020).
    [Crossref]
  202. M. Lobry, M. Loyez, K. Chah, E. M. Hassan, E. Goormaghtigh, M. C. DeRosa, R. Wattiez, and C. Caucheteur, “HER2 biosensing through SPR-envelope tracking in plasmonic optical fiber gratings,” Biomed. Opt. Express 11, 4862–4871 (2020).
    [Crossref]
  203. W. Yuan, Q. Zhao, L. Li, Y. Wang, and C. Yu, “Simultaneous measurement of temperature and curvature using ring-core fiber-based Mach-Zehnder interferometer,” Opt. Express 29, 17915–17925 (2021).
    [Crossref]
  204. Q. Chen, D. N. Wang, and F. Gao, “Simultaneous refractive index and temperature sensing based on a fiber surface waveguide and fiber Bragg gratings,” Opt. Lett. 46, 1209–1212 (2021).
    [Crossref]
  205. T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous measurement of liquid level and temperature using tilted fiber Bragg grating,” IEEE Sens. J. 16, 1205–1209 (2016).
    [Crossref]
  206. P. Kisala, D. Harasim, and J. Mroczka, “Temperature-insensitive simultaneous rotation and displacement (bending) sensor based on tilted fiber Bragg grating,” Opt. Express 24, 29922–29929 (2016).
    [Crossref]
  207. S. Upendar, M. A. Schmidt, and T. Weiss, “What optical fiber modes reveal: group velocity and effective index for external perturbations,” J. Opt. Soc. Am. B 38, 1097–1103 (2021).
    [Crossref]
  208. J. Jin, Y. Zhang, Y. Zhu, D. Zhang, and H. Zhang, “Analysis and correction method of axial strain error in multi-core fiber shape sensing,” IEEE Sensors J. 20, 12716–12722 (2020).
    [Crossref]
  209. S. Bandyopadhyay, L. shao, M. Smietana, C. Wang, J. Hu, G. Wang, W. He, G. Gu, and Y. Yang, “Employing higher order cladding modes of fiber Bragg grating for analysis of refractive index change in volume and at the surface,” IEEE Photonics J. 12, 7100313 (2020).
    [Crossref]
  210. H. J. W. M. Hoekstra and M. Hammer, “General relation for group delay and the relevance of group delay for refractometric sensing,” J. Opt. Soc. Am. B 31, 1561–1567 (2014).
    [Crossref]
  211. M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkins, P. Dragic, and J. Ballato, “Overview of high temperature fibre Bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibres,” J. Phys.: Photonics 1, 042001 (2019).
    [Crossref]
  212. C. Zhu, D. Alla, and J. Huang, “High-temperature stable FBGs fabricated by a point-by-point femtosecond laser inscription for multi-parameter sensing,” OSA Continuum 4, 355–363 (2021).
    [Crossref]
  213. N. Safari-Yazd, K. Chah, C. Caucheteur, and P. Mégret, “Thermal regeneration of tilted Bragg gratings UV photo-inscribed in hydrogen-loaded standard optical fibers,” J. Lightwave Technol. 39, 3582–3590 (2021).
    [Crossref]
  214. X. Rosello-Mecho, M. Delgado-Pinar, A. Diez, and M. V. Andres, “Measurement of Pockels’ coefficients and demonstration of the anisotropy of the elasto-optic effect in optical fibers under axial strain,” Opt. Lett. 41, 2934–2937 (2016).
    [Crossref]
  215. J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7, 4451 (2017).
    [Crossref]
  216. V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Anomalous effective strain-optic constants of nonparaxial optical fiber mode,” Opt. Lett. 39, 578 (2014).
    [Crossref]
  217. F. Khan, A. Denasi, D. Barrera, J. Madrigal, S. Sales, and S. Misra, “Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments,” IEEE Sens. J. 19, 5878–5884 (2019).
    [Crossref]
  218. T. Kissinger, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Dynamic fiber-optic shape sensing using fiber segment interferometry,” J. Lightwave Technol. 36, 917–925 (2018).
    [Crossref]
  219. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
    [Crossref]
  220. L. Shao, L. Xiong, C. Chen, A. Laronche, and J. Albert, “Directional bend sensor based on re-grown tilted fiber Bragg grating,” J. Lightwave Technol. 28 , 2681–2687 (2010).
    [Crossref]
  221. D. Feng, J. Albert, Y. Hou, B. Jiang, Y. Jiang, Y. Ma, and J. Zhao, “Co-located angularly offset fiber Bragg grating pair for temperature-compensated unambiguous 3D shape sensing,” Appl. Opt. 60 , 4185–4189 (2021).
    [Crossref]
  222. D. Feng, X. Qiao, and J. Albert, “Off-axis ultraviolet-written fiber Bragg gratings for directional bending measurements,” Opt. Lett. 41, 1201–1204 (2016).
    [Crossref]
  223. D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact optical fiber 3D shape sensor based on a pair of orthogonal tilted fiber Bragg gratings,” Sci. Rep. 5, 17415 (2015).
    [Crossref]
  224. H. Fan, L. Chen, and X. Bao, “Fiber-optic ultrasound transmitter based on multi-mode interference in curved adhesive waveguide,” IEEE Photon. Technol. Lett. 32, 325–328 (2020).
    [Crossref]
  225. H. Fan, L. Zhang, S. Gao, L. Chen, and X. Bao, “Ultrasound sensing based on an in-fiber dual-cavity Fabry-Pérot interferometer,” Opt. Lett. 44, 3606–3609 (2020).
    [Crossref]
  226. H. Fan, L. Chen, and X. Bao, “Chalcogenide microfiber-assisted silica microfiber for ultrasound detection,” Opt. Lett. 45, 1128–1131 (2020).
    [Crossref]
  227. H. Fan, W. Ma, L. Chen, and X. Bao, “Ultracompact twisted silica taper for 20 kHz to 94 MHz ultrasound sensing,” Opt. Lett. 45, 3889–3892 (2020).
    [Crossref]
  228. B. Gu, W. Qi, Y. Zhou, Z. Wu, P. P. Shum, and F. Luan, “Reflective liquid level sensor based on modes conversion in thin-core fiber incorporating tilted fiber Bragg grating,” Opt. Express 22, 11834–11839 (2014).
    [Crossref]
  229. C. Shen, X. Lian, V. Kavungal, C. Zhong, D. Liu, Y. Semenova, G. Farrell, J. Albert, and J. F. Donegan, “Optical spectral sweep comb liquid flow rate sensor,” Opt. Lett. 43, 751–754 (2018).
    [Crossref]
  230. C. Shen, D. Liu, X. Lian, T. Lang, C. Zhao, Y. Semenova, and J. Albert, “Microfluidic flow direction and rate vector sensor based on a partially gold-coated TFBG,” Opt. Lett. 45, 2776–2779 (2020).
    [Crossref]
  231. C. Shen, C. Zhong, D. Liu, X. Xian, J. Zheng, J. Wang, Y. Semenova, G. Farrell, J. Albert, and J. F. Donegan, “Measurements of milli-Newton surface tension forces with tilted fiber Bragg gratings,” Opt. Lett. 43, 2–5 (2018).
    [Crossref]
  232. A. Sihvola, Electromagnetic Mixing Formulas and Applications (IEEE Press, , 1999).
  233. C. Shen, W. Zhou, and J. Albert, “Polarization-resolved evanescent wave scattering from gold-coated tilted fiber gratings,” Opt. Express 22, 5277 (2014).
    [Crossref]
  234. C. Shen, L. Xiong, A. Bialiayeu, Y. Zhang, and J. Albert, “Polarization-resolved near- and far-field radiation from near-infrared tilted fiber Bragg gratings,” J. Lightwave Technol. 32, 2157–2162 (2014).
    [Crossref]
  235. J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanowire coatings on optical fibers,” J. Phys. Chem. C 118, 11035–11042 (2014).
    [Crossref]
  236. D. J. Mandia, W. Zhou, J. Albert, and S. T. Barry, “CVD on optical fibers: tilted fiber Bragg gratings as real-time sensing platforms,” Chem. Vap. Depos. 21, 4–20 (2015).
    [Crossref]
  237. Y. Yuan, T. Guo, X. Qiu, J. Tang, Y. Huang, L. Zhuang, S. Zhou, Z. Li, B. Guan, X. Zhang, and J. Albert, “Electrochemical surface plasmon resonance fiber-optic sensor: in-situ detection of electroactive biofilms,” Anal. Chem. 88, 7609–7616 (2016).
    [Crossref]
  238. A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, “Self-optimized metal coating for fiber plasmonics by electroless deposition,” Opt. Express 19, 18742–18753 (2011).
    [Crossref]
  239. W. Zhou, D. J. Mandia, M. B. E. Griffiths, A. Bialiayeu, Y. Zhang, P. G. Gordon, S. T. Barry, and J. Albert, “Polarization-dependent properties of the cladding modes of single mode fiber covered with gold nanoparticles,” Opt. Express 21, 245–255 (2013).
    [Crossref]
  240. D. J. Mandia, M. B. E. Griffiths, W. Zhou, P. G. Gordon, J. Albert, and S. T. Barry, “In situ deposition monitoring by a tilted fiber Bragg grating optical probe: probing nucleation in chemical vapour deposition of gold,” Phys. Procedia 46, 12–20 (2013).
    [Crossref]
  241. L. Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers,” Opt. Mater. Express 1, 128–137 (2011).
    [Crossref]
  242. A. Bialiayeu, A. Bottomley, D. Prezgot, A. Ianoul, and J. Albert, “Plasmon-enhanced refractometry using silver nanowire coating on tilted fiber Bragg gratings,” Nanotechnology 23, 444012 (2012).
    [Crossref]
  243. J. M. Renoirt, C. Zhang, M. Debliquy, M. G. Olivier, P. Megret, and C. Caucheteur, “High-refractive-index transparent coatings enhance the optical fiber cladding modes refractometric sensitivity,” Opt. Express 21, 29073–29082 (2013).
    [Crossref]
  244. S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52, 337–344 (2014).
    [Crossref]
  245. D. J. Mandia, W. Zhou, M. J. Ward, H. Joress, J. J. Sims, J. B. Giorgi, J. Albert, and S. T. Barry, “The effect of ALD-grown Al2O3 on the refractive index sensitivity of CVD gold-coated optical fiber sensors,” Nanotechnology 26, 434002 (2015).
    [Crossref]
  246. Y. Si, J. Lao, X. Zhang, Y. Liu, S. Cai, A. G. Vila, K. Li, Y. Huang, Y. Yuan, C. Caucheteur, and T. Guo, “Electrochemical plasmonic fiber-optic sensors for ultra-sensitive heavy metal detection,” J. Lightwave Technol. 37, 3495–3502 (2019).
    [Crossref]
  247. M. Śmietana, T. Drażewski, P. Firek, P. Mikulic, and W. J. Bock, “Comparison of Al2O3 nano-overlays deposited with magnetron sputtering and atomic layer deposition on optical fibers for sensing purpose,” in Micro/Nano Materials, Devices, and Systems (SPIE, 2013), p. 89231G .
  248. Y. Chen, F. Tang, Y. Bao, Y. Tang, and G. Chen, “A Fe-C coated long-period fiber grating sensor for corrosion-induced mass loss measurement,” Opt. Lett. 41, 2306–2309 (2016).
    [Crossref]
  249. Y. Chen, F. Tang, Y. Tang, M. J. O’Keefe, and G. Chen, “Mechanism and sensitivity of Fe-C coated long period fiber grating sensors for steel corrosion monitoring of RC structures,” Corros. Sci. 127, 70–81 (2017).
    [Crossref]
  250. F. Tang, Z. Li, Y. Chen, H. N. Li, J. Huang, and M. J. O’Keefe, “Monitoring passive film growth on steel using Fe-C coated long period grating fiber sensor,” IEEE Sens. J. 19, 6748–6755 (2019).
    [Crossref]
  251. R. Wang, Z. Li, X. Chen, N. Hu, Y. Xiao, K. Li, and T. Guo, “Mode Splitting in ITO-nanocoated tilted fiber Bragg gratings for vector twist measurement,” J. Lightwave Technol 39 , 4151–4157 (2021).
    [Crossref]
  252. A. Czapla, W. J. Bock, T. R. Wolinski, P. Mikulic, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Improving the electric field sensing capabilities of the long-period fiber grating coated with a liquid crystal layer,” Opt. Express 24, 5662–5673 (2016).
    [Crossref]
  253. S. Mathews, G. Farrell, and Y. Semenova, “Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements,” Appl. Opt. 50, 2628–2635 (2011).
    [Crossref]
  254. M. M. Tefelska, T. R. Wolinski, S. Ertman, K. Milenko, R. Laczkowski, A. Siarkowska, and A. W. Domanski, “Electric field sensing with photonic liquid crystal fibers based on micro-electrodes systems,” J. Lightwave Technol. 33, 2405–2411 (2015).
    [Crossref]
  255. L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. Sun, X. Dong, and Y. Hou, “Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection,” IEEE Photonics J. 4 , 2095–2104 (2012).
    [Crossref]
  256. Y. Miao, K. Zhang, B. Liu, W. Lin, H. Zhang, Y. Lu, and J. Yao, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photonics Technol. Lett. 25 , 306–309 (2012).
    [Crossref]
  257. Z. Zhang, T. Guo, X. Zhang, J. Xu, W. Xie, M. Nie, Q. Wu, B. O. Guan, and J. Albert, “Plasmonic fiber-optic vector magnetometer,” Appl. Phys. Lett. 108 , 101105 (2016).
    [Crossref]
  258. W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, B. Song, and J. Wu, “Two-dimensional magnetic field vector sensor based on tilted fiber Bragg grating and magnetic fluid,” J. Lightwave Technol. 31 , 2599–2605 (2013).
    [Crossref]
  259. D. Yang, L. Du, Z. Xu, Y. Jiang, J. Xu, M. Wang, Y. Bai, and H. Wang, “Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid,” Appl. Phys. Lett. 104 , 061903 (2014).
    [Crossref]
  260. Z. Zhang, F. Liu, Q. Ma, L. Li, and T. Guo, “Vector magnetometer based on localized scattering between optical fiber spectral combs and magnetic nanoparticles,” J. Lightwave Technol. 39 , 6599–6605 (2021).
    [Crossref]
  261. X. Chen, F. Du, T. Guo, J. Lao, X. Zhang, Z. Zhang, F. Liu, J. Li, C. Chen, and B.-O. Guan, “Liquid crystal-embedded tilted fiber grating electric field intensity sensor,” J. Lightwave Technol. 35 , 3347–3353 (2017).
    [Crossref]
  262. F. Shi, X. Bai, F. Wang, F. Pang, S. Pu, and X. Zeng, “All-fiber magnetic field sensor based on hollow optical fiber and magnetic fluid,” IEEE Sens. J. 17 , 619–622 (2016).
    [Crossref]
  263. J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators B 238, 518–524 (2017).
    [Crossref]
  264. J. Yin, P. Yan, H. Chen, L. Yu, J. Jiang, M. Zhang, and S. Ruan, “All-fiber-optic vector magnetometer based on anisotropic magnetism-manipulation of ferromagnetism nanoparticles,” Appl. Phys. Lett. 110 , 231104 (2017).
    [Crossref]
  265. M. Ma, H. Chen, S. Li, X. Jing, W. Zhang, and M. Wang, “Analysis of a magnetic field sensor based on a Sagnac interferometer using a magnetic fluid-filled birefringent photonic crystal fiber,” IEEE Photonics J. 11 , 1–10 (2019).
    [Crossref]
  266. W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
    [Crossref]
  267. S. Dong, S. Pu, and H. Wang, “Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with taper-like and lateral-offset fusion splicing,” Opt. Express 22 , 19108–19116 (2014).
    [Crossref]
  268. A. Layeghi and H. Latifi, “Magnetic field vector sensor by a nonadiabatic tapered Hi-Bi fiber and ferrofluid nanoparticles,” Opt. Laser Technol. 102, 184–190 (2018).
    [Crossref]
  269. R. Q. Lv, Y. Zhao, D. Wang, and Q. Wang, “Magnetic fluid-filled optical fiber Fabry-Pérot sensor for magnetic field measurement,” IEEE Photonics Technol. Lett. 26 , 217–219 (2013).
    [Crossref]
  270. Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic nanoparticles functionalized few-mode-fiber-based plasmonic vector magnetometer,” Nanomaterials 9 , 785 (2019).
    [Crossref]
  271. Y. Chen, Y. Hu, H. Cheng, F. Yan, Q. Lin, Y. Chen, P. Wu, L. Chen, G. Liu, G. Peng, Y. Luo, and Z. Chen, “Side-polished single-mode-multimode-single-mode fiber structure for the vector magnetic field sensing,” J. Lightwave Technol. 38 , 5837–5843 (2020).
    [Crossref]
  272. C. P. Grey and J. M. Tarascon, “Sustainability and in situ monitoring in battery development,” Nat. Mater. 16, 45–56 (2017).
    [Crossref]
  273. G. Yang, C. Leitão, Y. Li, J. Pinto, and X. Jiang, “Real-time temperature measurement with fiber Bragg sensors in lithium batteries for safety usage,” Measurement 46 , 3166–3172 (2013).
    [Crossref]
  274. L. H. J. Raijmakers, D. L. Danilov, R. A. Eichel, and P. H. L. Notten, “A review on various temperature-indication methods for Li-ion batteries,” Appl. Energy 240, 918–945 (2019).
    [Crossref]
  275. X. Cheng and M. Pecht, “In situ stress measurement techniques on Li-ion battery electrodes: a review,” Energies 10, 591 (2017).
    [Crossref]
  276. J. Peng, X. Zhou, S. Jia, Y. Jin, S. Xu, and J. Chen, “High precision strain monitoring for lithium ion batteries based on fiber Bragg grating sensors,” J. Power Sources 443, 226692 (2019).
    [Crossref]
  277. A. Fortier, M. Tsao, N. D. Williard, Y. Xing, and M. G. Pecht, “Preliminary study on integration of fiber optic Bragg grating sensors in li-ion batteries and in situ strain and temperature monitoring of battery cells,” Energies 10 , 838 (2017).
    [Crossref]
  278. M. Nascimento, T. Paixão, M. S. Ferreira, and J. Pinto, “Thermal mapping of a lithium polymer batteries pack with FBGs network,” Batteries 4 , 67 (2018).
    [Crossref]
  279. S. Novais, M. Nascimento, L. Grande, M. F. Domingues, P. Antunes, N. Alberto, C. Leitao, R. Oliveira, S. Koch, G. T. Kim, S. Passerini, and J. Pinto, “Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors,” Sensors 16 , 1394 (2016).
    [Crossref]
  280. A. Raghavan, P. Kiesel, L. W. Sommer, J. Schwartz, A. Lochbaum, A. Hegyi, A. Schuh, K. Arakaki, B. Saha, A. Ganguli, K. H. Kim, C. Kim, H. J. Hah, S. kim, G.-O. Hwang, G.-C. Chung, B. Choi, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance,” J. Power Sources 341, 466–473 (2017).
    [Crossref]
  281. A. Ganguli, B. Saha, A. Raghavan, P. Kiesel, K. Arakaki, A. Schuh, J. Schwartz, A. Hegyi, L. W. Sommer, A. Lochbaum, S. Sahu, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: internal cell signals and utility for state estimation,” J. Power Sources 341, 474–482 (2017).
    [Crossref]
  282. A. R. Ghannoum, P. Nieva, A. Yu, and A. Khajepour, “Development of embedded fiber-optic evanescent wave sensors for optical characterization of graphite anodes in lithium-ion batteries,” ACS Appl. Mater. Interfaces 9 , 41284–41290 (2017).
    [Crossref]
  283. M. Nascimento, M. S. Ferreira, and J. L. Pinto, “Simultaneous sensing of temperature and bi-directional strain in a prismatic Li-ion battery,” Batteries 4 , 23 (2018).
    [Crossref]
  284. M. Nascimento, S. Movais, M. Ding, M. S. Ferreira, S. Koch, S. Passerini, and J. Pinto, “Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries,” J. Power Sources 410, 1–9 (2019).
    [Crossref]
  285. T. Yamanaka, H. Nakagawa, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “In situ Raman spectroscopic studies on concentration of electrolyte salt in lithium ion batteries by using ultrafine multifiber probes,” ChemSusChem 10 , 855–861 (2017).
    [Crossref]
  286. J. Huang, L. A. Blanquer, J. Bonefacino, E. R. Logan, D. A. D. Corte, C. Delacourt, B. M. Gallant, S. T. Boles, J. R. Dhan, H.-Y. Tam, and J.-M. Tarascon, “Operando decoding of chemical and thermal events in commercial Na (Li)-ion cells via optical sensors,” Nat. Energy 5 , 674–683 (2020).
    [Crossref]
  287. J. Lao, P. Sun, F. Liu, X. Zhang, C. Zhao, W. Mai, T. Guo, G. Xiao, and J. Albert, “In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage,” Light: Sci. Appl. 7, 1–12 (2018).
    [Crossref]
  288. F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors 7, 23 (2017).
    [Crossref]
  289. Y. Liu and J. Yu, “Oriented immobilization of proteins on solid supports for use in biosensors and biochips: a review,” Microchim. Acta 183, 1–19 (2016).
    [Crossref]
  290. G. Ramsay, “DNA chips: State-of-the art,” Nat. Biotechnol. 16, 40–44 (1998).
    [Crossref]
  291. J. R. Crowther, The ELISA Guidebook, 2nd ed., (Springer International Publishing, 2009).
  292. M. M. Bilek and D. R. McKenzie, “Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants,” Biophys. Rev. 2, 55–65 (2010).
    [Crossref]
  293. E. Makhneva, L. Barillas, Z. Farka, M. Pastucha, P. Skládal, K.-D. Weltmann, and K. Fricke, “Functional plasma polymerized surfaces for biosensing,” ACS Appl. Mater. Interfaces 12, 17100–17112 (2020).
    [Crossref]
  294. M. Oliverio, S. Perotto, G. C. Messina, L. Lovato, and F. De Angelis, “Chemical functionalization of plasmonic surface biosensors: A tutorial review on issues, strategies, and costs,” ACS Appl. Mater. Interfaces 9, 29394–29411 (2017).
    [Crossref]
  295. M. L. Sham, J. Li, P. C. Ma, and J. K. Kim, “Cleaning and functionalization of polymer surfaces and nanoscale carbon fillers by UV/ozone treatment: a review,” J. Compos. Mater. 43, 1537–1564 (2009).
    [Crossref]
  296. M. Asal, Ö Özen, M. Şahinler, and İ Polatoğlu, “Recent developments in enzyme, DNA and immuno-based biosensors,” Sensors 18 , 1924 (2018).
    [Crossref]
  297. A. Zamora-Gálvez, E. Morales-Narváez, C. C. Mayorga-Martinez, and A. Merkoçi, “Nanomaterials connected to antibodies and molecularly imprinted polymers as bio/receptors for bio/sensor applications,” Appl. Mater. Today 9, 387–401 (2017).
    [Crossref]
  298. M. Loyez, J. Albert, C. Caucheteur, and R. Wattiez, “Cytokeratins biosensing using tilted fiber gratings,” Biosensors 8, 1–8 (2018).
    [Crossref]
  299. A. Shakeri, N. A. Jarad, A. Leung, L. Soleymani, and T. F. Didar, “Biofunctionalization of glass- and paper-based microfluidic devices: a review,” Adv. Mater. Interfaces 6, 1–16 (2019).
    [Crossref]
  300. A. K. Trilling, J. Beekwilder, and H. Zuilhof, “Antibody orientation on biosensor surfaces: a minireview,” Analyst 138, 1619–1627 (2013).
    [Crossref]
  301. M. Loyez, M. Lobry, R. Wattiez, and C. Caucheteur, “Optical fiber gratings immunoassays,” Sensors 19, 2595 (2019).
    [Crossref]
  302. D. Santano, A. Urrutia, C. R. Zamarreno, and I. Del Villar, “Advances in fiber optic DNA-based sensors: A Review,” IEEE Sens. J. 21, 12679–12691 (2021).
    [Crossref]
  303. S. Lépinay, A. Ianoul, and J. Albert, “Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules,” Talanta 128, 401–407 (2014).
    [Crossref]
  304. M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Act. B 250, 32–38 (2017).
    [Crossref]
  305. M. Sypabekova, S. Korganbayev, Á González-Vila, C. Caucheteur, M. Shaimerdenova, T. Ayupova, A. Bekmurzayeva, L. Vangelista, and D. Tosi, “Functionalized etched tilted fiber Bragg grating aptasensor for label-free protein detection,” Biosens. Bioelectron. 146, 111765 (2019).
    [Crossref]
  306. A. Bekmurzayeva, K. Dukenbayev, M. Shaimerdenova, I. Bekniyazov, T. Ayupova, M. Sypabekova, C. Molardi, and D. Tosi, “Etched fiber Bragg grating biosensor functionalized with aptamers for detection of thrombin,” Sensors 18 , 4298 (2018).
    [Crossref]
  307. A. Celebanska, Y. Chiniforooshan, M. Janik, P. Mikulic, B. Sellamuthu, R. Walsh, J. Perreault, and W. J. Bock, “Label-free cocaine aptasensor based on a long-period fiber grating,” Opt. Lett. 44, 2482 (2019).
    [Crossref]
  308. A. Baliyan, S. Sital, U. Tiwari, R. Gupta, and E. K. Sharma, “Long period fiber grating based sensor for the detection of triacylglycerides,” Biosens. Bioelectron. 79, 693–700 (2016).
    [Crossref]
  309. F. Esposito, L. Sansone, C. Taddei, S. Campopiano, M. Giordano, and A. Iadicicco, “Ultrasensitive biosensor based on long period grating coated with polycarbonate-graphene oxide multilayer,” Sens. Act. B 274, 517–526 (2018).
    [Crossref]
  310. J. Yang, L. Zhou, J. Huang, C. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Act B 207, 477–480 (2015).
    [Crossref]
  311. S. Barrias, J. R. Fernandes, J. E. Eiras-Dias, J. Brazão, and P. Martins-Lopes, “Label free DNA-based optical biosensor as a potential system for wine authenticity,” Food Chem. 270, 299–304 (2019).
    [Crossref]
  312. B. Luo, Z. Yan, Z. Sun, Y. Liu, M. Zhao, and L. Zhang, “Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration,” Opt. Express 23, 32429 (2015).
    [Crossref]
  313. Y. Zhao, R.-J. Tong, F. Xia, and Y. Peng, “Current status of optical fiber biosensor based on surface plasmon resonance,” Biosens. Bioelectron. 142, 111505 (2019).
    [Crossref]
  314. B.D. Gupta, A.M. Shrivastav, and S.P. Usha, Optical Sensors for Biomedical Diagnostics and Environmental Monitoring, 1st ed. (CRC Press , , 2017).
  315. B. Peeters, S. Safdar, D. Daems, P. Goos, D. Spasic, and J. Lammertyn, “Solid-phase PCR-amplified DNAzyme activity for real-time FO-SPR detection of the MCR-2 gene,” Anal. Chem. 92 , 10783–10791 (2020).
    [Crossref]
  316. N. A. M. Zainuddin, M. M. Ariannejad, P. T. Arasu, S. W. Harun, and R. Zakaria, “Investigation of cladding thicknesses on silver SPR based side-polished optical fiber refractive-index sensor,” Results Phys. 13, 102255 (2019).
    [Crossref]
  317. K. Shah, N. K. Sharma, and V. Sajal, “SPR based fiber optic sensor with bi layers of indium tin oxide and platinum: a theoretical evaluation,” Optik 135, 50–56 (2017).
    [Crossref]
  318. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B 54, 3–15 (1999).
    [Crossref]
  319. Y. V. Stebunov, D. I. Yakubovsky, D. Y. Fedyanin, A. V. Arsenin, and V. S. Volkov, “Superior sensitivity of copper-based plasmonic biosensors,” Langmuir 34, 4681–4687 (2018).
    [Crossref]
  320. K. J. Huang, Y. J. Liu, H. B. Wang, T. Gan, Y. M. Liu, and L. L. Wang, “Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide-graphene composites and gold nanoparticles,” Sens. Act. B 191, 828–836 (2014).
    [Crossref]
  321. M. Loyez, C. Ribaut, C. Caucheteur, and R. Wattiez, “Functionalized gold electroless-plated optical fiber gratings for reliable surface biosensing,” Sens. Act B 280, 54–61 (2019).
    [Crossref]
  322. J. M. M. M. de Almeida, H. Vasconcelos, P. A. S. Jorge, and L. Coelho, “Plasmonic optical fiber sensor based on double step growth of gold nano-islands,” Sensors 18 , 1–13 (2018).
    [Crossref]
  323. I. Antohe, K. Schouteden, P. Goos, F. Delport, D. Spasic, and J. Lammertyn, “Thermal annealing of gold coated fiber optic surfaces for improved plasmonic biosensing,” Sens. Actu. B 229, 678–685 (2016).
    [Crossref]
  324. D. Daems, B. Peeters, F. Delport, T. Remans, J. Lammertyn, and D. Spasic, “Identification and quantification of celery allergens using fiber optic surface plasmon resonance PCR,” Sensors 17 , 1754 (2017).
    [Crossref]
  325. F. Wang, Y. Zhang, M. Lu, Y. Du, M. Chen, S. Meng, W. Ji, C. Sun, and W. Peng, “Near-infrared band gold nanoparticles-Au film “hot spot” model based label-free ultratrace lead (II) ions detection via fiber SPR DNAzyme biosensor,” Sens. Act. B 337, 129816 (2021).
    [Crossref]
  326. S. M. Tripathi, K. Dandapat, W. J. Bock, P. Mikulic, J. Perreault, and B. Sellamuthu, “Gold coated dual-resonance long-period fiber gratings (DR-LPFG) based aptasensor for cyanobacterial toxin detection,” Sens. Bio-Sensing Res. 25, 100289 (2019).
    [Crossref]
  327. F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87, 12024–12031 (2015).
    [Crossref]
  328. L. L. Liu, L. Marques, R. Correia, S. P. Morgan, S. W. Lee, P. Tighe, L. Fairclough, and S. Korposh, “Highly sensitive label-free antibody detection using a long period fibre grating sensor,” Sens. Act. B 271, 24–32 (2018).
    [Crossref]
  329. R. Wang, Z. Ren, D. Kong, B. Hu, and Z. He, “Highly sensitive label-free biosensor based on graphene-oxide functionalized micro-tapered long period fiber grating,” Opt. Mater. (Amst) 109, 110253 (2020).
    [Crossref]
  330. G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
    [Crossref]
  331. W. Hu, Y. Huang, C. Chen, Y. Liu, T. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sens. Act. B 264, 440–447 (2018).
    [Crossref]
  332. B. Jiang, K. Zhou, C. Wang, Q. Sun, G. Yin, Z. Tai, K. Wilson, J. Zhao, and L. Zhang, “Label-free glucose biosensor based on enzymatic graphene oxide-functionalized tilted fiber grating,” Sens. Act. B. 254, 1033–1039 (2018).
    [Crossref]
  333. B. Luo, Y. Xu, S. Wu, M. Zhao, P. Jiang, S. Shi, Z. Zhang, Y. Wang, L. Wang, and Y. Liu, “A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus,” Biosens. Bioelectron. 100, 169–175 (2018).
    [Crossref]
  334. M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
    [Crossref]
  335. Y. Zhang, F. Wang, S. Qian, Z. Liu, Q. Wang, Y. Gu, Z. Wu, Z. Jing, C. Sun, and W. Peng, “A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein,” Sensors 17, 2259 (2017).
    [Crossref]
  336. C. Ribaut, M. Loyez, J. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
    [Crossref]
  337. C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
    [Crossref]
  338. V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
    [Crossref]
  339. J. Lao, L. Han, Z. Wu, X. Zhang, Y. Huang, Y. Tang, and T. Guo, “Gold nanoparticle-functionalized surface plasmon resonance optical fiber biosensor: in situ detection of thrombin with 1 nM detection limit,” J. Lightwave Technol. 37, 2748–2755 (2019).
    [Crossref]
  340. M. Lobry, M. Loyez, E. M. Hassan, K. Chah, M. C. DeRosa, E. Goormaghtigh, R. Wattiez, and C. Caucheteur, “Multimodal plasmonic optical fiber grating aptasensor,” Opt. Express 28, 7539 (2020).
    [Crossref]
  341. M. Loyez, E. M. Hassan, M. Lobry, F. Liu, C. Caucheteur, R. Wattiez, M. C. DeRosa, W. G. Willmore, and J. Albert, “Rapid detection of circulating breast cancer cells using a multiresonant optical fiber aptasensor with plasmonic amplification,” ACS Sens. 5, 454–463 (2020).
    [Crossref]
  342. Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83, 7027–7034 (2011).
    [Crossref]
  343. L. Liu, X. Zhang, Q. Zhu, K. Li, Y. Lu, X. Zhou, and T. Guo, “Ultrasensitive detection of endocrine disruptors via superfine plasmonic spectral combs,” Light Sci. Appl. 10, 181 (2021).
    [Crossref]
  344. S. E. Hosseini and M. A. Wahid, “Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development,” Renew. Sustain. Energy Rev. 57, 850–866 (2016).
    [Crossref]
  345. P. Dimitriou and T. Tsujimura, “A review of hydrogen as a compression ignition engine fuel,” Int. J. Hydrogen Energy 42 , 24470–24486 (2017).
    [Crossref]
  346. A. M. Abdalla, S. Hossain, O. B. Nisfindy, A. T. Azad, M. Dawood, and A. K. Azad, “Hydrogen production, storage, transportation and key challenges with applications: a review,” Energy Convers. Manage. 165, 602–627 (2018).
    [Crossref]
  347. J. Nakayama, N. Y. Kasai, T. Shibutani, and A. Miyake, “Security risk analysis of a hydrogen fueling station with an on-site hydrogen production system involving methylcyclohexane,” Int. J. Hydrogen Energy 44 , 9110–9119 (2018).
    [Crossref]
  348. T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - a review,” Sens. Act. B 157 , 329–352 (2011).
    [Crossref]
  349. W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy 36 , 2462–2470 (2011).
    [Crossref]
  350. Y. N. Zhang, H. Peng, X. Qian, Y. Zhang, G. An, and Y. Zhao, “Recent advancements in optical fiber hydrogen sensors,” Sens. Actuators, B 244, 393–416 (2017).
    [Crossref]
  351. H. E. Joe, H. Yun, S.-H. Jo, M. B. G. Jun, and B. K. Min, “A review on optical fiber sensors for environmental monitoring,” Int. J. Precis. Eng. Manuf. Technol. 5 , 173–191 (2018).
    [Crossref]
  352. J. X. Dai, L. Zhu, G. P. Wang, F. Xiang, Y. H. Qin, M. Wang, and M. H. Yang, “Optical fiber grating hydrogen sensors: a review,” Sensors 17 , 577 (2017).
    [Crossref]
  353. Z. P. Yu, L. Jin, L. H. Chen, J. Li, Y. Ran, and B. O. Guan, “Microfiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 27 , 2575–2578 (2015).
    [Crossref]
  354. S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photon. Technol. Lett. 25 , 401–403 (2013).
    [Crossref]
  355. L. Coelho, J. M. M. M. de Almeida, J. L. Santos, and D. Viegas, “Fiber optic hydrogen sensor based on an etched Bragg grating coated with palladium,” Appl. Opt. 54 , 10342–10348 (2015).
    [Crossref]
  356. Y. H. Yang, F. L. Yang, H. Wang, W. Yang, and W. Jin, “Temperature-insensitive hydrogen sensor with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” J. Light. Technol 33 , 2566–2571 (2015).
    [Crossref]
  357. C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Express 21 , 382–390 (2013).
    [Crossref]
  358. A. Hosoki, M. Nishiyama, H. Igawa, A. Seki, and K. Watanabe, “A hydrogen curing effect on surface plasmon resonance fiber optic hydrogen sensors using an annealed Au/Ta2O5/Pd multi-layers film,” Opt. Express 22 , 18556–18563 (2014).
    [Crossref]
  359. R. Tabassum and B. D. Gupta, “Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium,” J. Opt. 18 , 015004 (2016).
    [Crossref]
  360. S. S. Cai, Á González-Vila, X. J. Zhang, T. Guo, and C. Caucheteur, “Palladium-coated plasmonic optical fiber gratings for hydrogen detection,” Opt. Lett. 44 , 4483–4486 (2019).
    [Crossref]
  361. S. S. Cai, F. Liu, R. L. Wang, Y. G. Xiao, K. W. Li, C. Caucheteur, and T. Guo, “Narrow bandwidth fiber-optic spectral combs for renewable hydrogen detection,” Sci. China Inf. Sci. 63 , 222401 (2020).
    [Crossref]
  362. Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56, 359–367 (2014).
    [Crossref]
  363. M. Loyez, J. Larrieu, S. Chevineau, M. Remmelink, D. Leduc, B. Bondue, P. Lambert, J. Devière, R. Wattiez, and C. Caucheteur, “In situ cancer diagnosis through online plasmonics,” Biosens. Bioelectron. 131, 104–112 (2019).
    [Crossref]
  364. R. Delgado-Macuil, K. González-León, and G. Beltrán-Pérez, “Neuropsin (Opn5) detection in the brain tissue of a murine model using long period fiber grating (LPFG),” Opt. Laser Technol. 139, 1–9 (2021).
    [Crossref]
  365. R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6, 1502 (2015).
    [Crossref]
  366. S. Ohayon, A. Caravaca-Aguirre, R. Piestun, and J. J. DiCarlo, “Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging,” Biomed. Opt. Express 9, 1492 (2018).
    [Crossref]
  367. J. Desroches, M. Jermyn, M. Pinto, F. Picot, M.-A. Tremblay, S. Obaid, E. Marple, K. Urmey, D. Trudel, G. Soulez, M.-C. Guiot, B. C. Wilson, K. Petrecca, and F. Leblond, “A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy,” Sci. Rep. 8, 1792 (2018).
    [Crossref]
  368. A. Vernet-Crua, D. Medina-Cruz, E. Mostafavi, A. Benko, J. L. Cholula-Diaz, M. Suravana, H. Vahidi, H. Barabadi, and T. J. Webster, “Nanobiosensors for theranostic applications,” in Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications (Elsevier, 2021), Chap. 23, pp. 511–543 .
  369. M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “Three-dimensional correlative single-cell imaging utilizing fluorescence and refractive index tomography,” J. Biophotonics 11 , 1–11 (2018).
    [Crossref]
  370. T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
    [Crossref]
  371. S. A. Alqarni, W. G. Willmore, J. Albert, and C. W. Smelser, “Self-monitored and optically powered fiber-optic device for localized hyperthermia and controlled cell death in vitro,” Appl. Opt. 60, 2400–2411 (2021).
    [Crossref]
  372. J. Koppert, H. Jean-Ruel, D. O’Neill, C. Harder, W. Willmore, A. Ianoul, and J. Albert, “Self-heating tilted fiber Bragg grating device for melt curve analysis of solid-phase DNA hybridization and thermal cycling,” Anal. Bioanal. Chem. 411, 6813–6823 (2019).
    [Crossref]
  373. K. Yang, B. Liu, C. Liao, Y. Wang, Z. Cai, J. Tang, Y. Yang, and Y. Wang, “Highly localized point-by-point fiber Bragg grating for multi-parameter measurement,” J. Lightwave Technol. 39 , 6686–6690 (2021).
    [Crossref]
  374. K. Yao, Q. Lin, Z. Jiang, N. Zhao, B. Tian, and G. D. Peng, “Joint-peaks demodulation method based on multireflection peaks of a few-mode fiber Bragg grating for reducing sensing error,” Opt. Express 29, 4422–4430 (2021).
    [Crossref]
  375. Y. Yu, X. Zhang, K. Wang, Z. Wang, H. Sun, Y. Yang, C. Deng, Y. Huang, and T. Wang, “Coexistence of transmission mechanisms for independent multi-parameter sensing in a silica capillary-based cascaded structure,” Opt. Express 29, 27938–27950 (2021)..
    [Crossref]

2021 (38)

Z. He and Q. Liu, “Optical fiber distributed acoustic sensors: a review,” J. Lightwave Technol. 39 , 3671–3686 (2021).
[Crossref]

M. C. Alonso-Murias, D. Monzon-Hernandez, O. Rodriguez-Quiroz, J. E. Antonio-Lopez, A. Schulzgen, R. Amezcua-Correa, and J. Villatoro, “Long-range multicore optical fiber displacement sensor,” Opt. Lett. 46, 2224–2227 (2021).
[Crossref]

J. Amorebieta, A. Ortega-Gomez, G. Durana, R. Fernandez, E. Antonio-Lopez, A. Schulzgen, J. Zubia, R. Amezcua-Correa, and J. Villatoro, “Compact omnidirectional multicore fiber-based vector bending sensor,” Sci. Rep. 11, 5989 (2021).
[Crossref]

J. Cui, H. Luo, J. Lu, X. Cheng, and H. Y. Tam, “Random forest assisted vector displacement sensor based on a multicore fiber,” Opt. Express 29, 15852–15864 (2021).
[Crossref]

T. A. Goebel, J. Nold, C. Hupel, S. Kuhn, N. Haarlammert, T. Schreiber, C. Matzdorf, T. O. Imogore, R. G. Krämer, D. Richter, A. Tünnermann, and S. Nolte, “Ultrashort pulse written fiber Bragg gratings as narrowband filters in multicore fibers,” Appl. Opt. 60 , 43–51 (2021).
[Crossref]

D. Paloschi, K. A. Bronnikov, S. Korganbayev, A. A. Wolf, A. Dostovalov, and P. Saccomandi, “3D shape sensing with multicore optical fibers: transformation matrices versus Frenet-Serret equations for real-time application,” IEEE Sens. J. 21, 4599–4609 (2021).
[Crossref]

R. Zhou, F. Chen, S. Li, R. Wang, and X. Qiao, “Three-dimensional vector accelerometer using a multicore fiber inscribed with three FBGs,” J. Lightwave Technol. 39, 3244–3250 (2021).
[Crossref]

Z. Li and H. Zhu, “Fiber-optic surface waveguide modes excited by inter/intra mode transition for refractometric sensitivity enhancement,” IEEE J. Sel. Top. Quantum Electron. 27, 5600308 (2021).
[Crossref]

F. Shen and T. Zhang, “Numerical analyses of the polarization dependent cladding mode coupling in localized fiber Bragg gratings,” IEEE Access 9, 6689–6695 (2021).
[Crossref]

Q. Wu, Y. Qu, J. Liu, J. Yuan, S.-P. Wan, T. Wu, X.-D. He, B. Liub, D. Liuc, and Y. Ma, “Singlemode-multimode-singlemode fiber structures for sensing applications – a review,” IEEE Sens. J. 21 , 12734–12751 (2021).
[Crossref]

J. R. Guzmán-Sepúlveda, R. Guzmán-Cabrera, and A. A. Castillo-Guzmán, “Optical sensing using fiber-optic multimode interference devices: a review of nonconventional sensing schemes,” Sensors 21, 1862 (2021).
[Crossref]

I. Floris, J. M. Adam, P. A. Calderón, and S. Sales, “Fiber optic shape sensors: a comprehensive review,” Opt. Lasers Eng. 139, 106508 (2021).
[Crossref]

A. Azmi, A. Abdullah, M. M. Noor, M. Ibrahim, R. R. Ibrahim, T. Tan, and J. Zhang, “Dynamic bending and rotation sensing based on high coherence interferometry in multicore fiber,” Opt. Laser Technol. 135, 106716 (2021).
[Crossref]

Z. Zhao, L. Shen, Y. Dang, C. Lu, and M. Tang, “Enabling long range distributed vibration sensing using multicore fiber interferometers,” Opt. Lett. 46, 3685–3688 (2021).
[Crossref]

D. Yan, Z. Tian, N.-K. Chen, L. Zhang, Y. Yao, Y. Xie, P. P. Shum, K. T. Grattan, and D. Wang, “Observation of split evanescent field distributions in tapered multicore fibers for multiline nanoparticle trapping and microsensing,” Opt. Express 29, 9532–9543 (2021).
[Crossref]

W. Chen, Y. Zhang, H. Yang, Y. Qiu, H. Li, Z. Chen, and C. Yu, “Non-invasive measurement of vital signs based on seven-core fiber interferometer,” IEEE Sens. J. 21, 10703–10710 (2021).
[Crossref]

J. A. Flores-Bravo, R. Fernández, E. A. Lopez, A. Schülzgen, A. Amezcua-Correa, and J. Villatoro, “Simultaneous sensing of refractive index and temperature with supermode interference,” J. Lightwave Technol. 39, 7351–7357 (2021)

N. Cuando-Espitia, M. A. Fuentes-Fuentes, D. A. May-Arrioja, I. Hernández-Romano, R. Martínez-Manuel, and M. Torres-Cisneros, “Dual-point refractive index measurements using coupled seven-core fibers,” J. Lightwave Technol. 39, 310–319 (2021).
[Crossref]

F. Wei, D. Liu, Z. Wang, Z. Wang, G. Farrell, Q. Wu, G.-D. Peng, and Y. Semenova, “Enhancing the visibility of Vernier effect in a tri-microfiber coupler fiber loop interferometer for ultrasensitive refractive index and temperature sensing,” J. LightwaveTechnol. 39, 1523–1529 (2021).
[Crossref]

F. Chiavaioli and D. Janner, “Fiber optic sensing with lossy mode resonances: applications and perspectives,” J. Lightwave Technol. 39 , 3855–3870 (2021).
[Crossref]

F. Esposito, L. Sansone, A. Srivastava, F. Baldini, S. Campopiano, F. Chiavaioli, M. Giordano, A. Giannetti, and A. Iadicicco, “Long period grating in double cladding fiber coated with graphene oxide as high-performance optical platform for biosensing,” Biosens. Bioelectron. 172, 112747 (2021).
[Crossref]

F. Liu, X. Zhang, K. Li, T. Guo, A. Ianoul, and J. Albert, “Discrimination of bulk and surface refractive index change in plasmonic sensors with narrow bandwidth resonance combs,” ACS Sens. 6, 3013–3023 (2021).
[Crossref]

W. Yuan, Q. Zhao, L. Li, Y. Wang, and C. Yu, “Simultaneous measurement of temperature and curvature using ring-core fiber-based Mach-Zehnder interferometer,” Opt. Express 29, 17915–17925 (2021).
[Crossref]

Q. Chen, D. N. Wang, and F. Gao, “Simultaneous refractive index and temperature sensing based on a fiber surface waveguide and fiber Bragg gratings,” Opt. Lett. 46, 1209–1212 (2021).
[Crossref]

S. Upendar, M. A. Schmidt, and T. Weiss, “What optical fiber modes reveal: group velocity and effective index for external perturbations,” J. Opt. Soc. Am. B 38, 1097–1103 (2021).
[Crossref]

C. Zhu, D. Alla, and J. Huang, “High-temperature stable FBGs fabricated by a point-by-point femtosecond laser inscription for multi-parameter sensing,” OSA Continuum 4, 355–363 (2021).
[Crossref]

N. Safari-Yazd, K. Chah, C. Caucheteur, and P. Mégret, “Thermal regeneration of tilted Bragg gratings UV photo-inscribed in hydrogen-loaded standard optical fibers,” J. Lightwave Technol. 39, 3582–3590 (2021).
[Crossref]

D. Feng, J. Albert, Y. Hou, B. Jiang, Y. Jiang, Y. Ma, and J. Zhao, “Co-located angularly offset fiber Bragg grating pair for temperature-compensated unambiguous 3D shape sensing,” Appl. Opt. 60 , 4185–4189 (2021).
[Crossref]

R. Wang, Z. Li, X. Chen, N. Hu, Y. Xiao, K. Li, and T. Guo, “Mode Splitting in ITO-nanocoated tilted fiber Bragg gratings for vector twist measurement,” J. Lightwave Technol 39 , 4151–4157 (2021).
[Crossref]

Z. Zhang, F. Liu, Q. Ma, L. Li, and T. Guo, “Vector magnetometer based on localized scattering between optical fiber spectral combs and magnetic nanoparticles,” J. Lightwave Technol. 39 , 6599–6605 (2021).
[Crossref]

D. Santano, A. Urrutia, C. R. Zamarreno, and I. Del Villar, “Advances in fiber optic DNA-based sensors: A Review,” IEEE Sens. J. 21, 12679–12691 (2021).
[Crossref]

F. Wang, Y. Zhang, M. Lu, Y. Du, M. Chen, S. Meng, W. Ji, C. Sun, and W. Peng, “Near-infrared band gold nanoparticles-Au film “hot spot” model based label-free ultratrace lead (II) ions detection via fiber SPR DNAzyme biosensor,” Sens. Act. B 337, 129816 (2021).
[Crossref]

L. Liu, X. Zhang, Q. Zhu, K. Li, Y. Lu, X. Zhou, and T. Guo, “Ultrasensitive detection of endocrine disruptors via superfine plasmonic spectral combs,” Light Sci. Appl. 10, 181 (2021).
[Crossref]

R. Delgado-Macuil, K. González-León, and G. Beltrán-Pérez, “Neuropsin (Opn5) detection in the brain tissue of a murine model using long period fiber grating (LPFG),” Opt. Laser Technol. 139, 1–9 (2021).
[Crossref]

S. A. Alqarni, W. G. Willmore, J. Albert, and C. W. Smelser, “Self-monitored and optically powered fiber-optic device for localized hyperthermia and controlled cell death in vitro,” Appl. Opt. 60, 2400–2411 (2021).
[Crossref]

K. Yang, B. Liu, C. Liao, Y. Wang, Z. Cai, J. Tang, Y. Yang, and Y. Wang, “Highly localized point-by-point fiber Bragg grating for multi-parameter measurement,” J. Lightwave Technol. 39 , 6686–6690 (2021).
[Crossref]

K. Yao, Q. Lin, Z. Jiang, N. Zhao, B. Tian, and G. D. Peng, “Joint-peaks demodulation method based on multireflection peaks of a few-mode fiber Bragg grating for reducing sensing error,” Opt. Express 29, 4422–4430 (2021).
[Crossref]

Y. Yu, X. Zhang, K. Wang, Z. Wang, H. Sun, Y. Yang, C. Deng, Y. Huang, and T. Wang, “Coexistence of transmission mechanisms for independent multi-parameter sensing in a silica capillary-based cascaded structure,” Opt. Express 29, 27938–27950 (2021)..
[Crossref]

2020 (43)

S. S. Cai, F. Liu, R. L. Wang, Y. G. Xiao, K. W. Li, C. Caucheteur, and T. Guo, “Narrow bandwidth fiber-optic spectral combs for renewable hydrogen detection,” Sci. China Inf. Sci. 63 , 222401 (2020).
[Crossref]

M. Lobry, M. Loyez, E. M. Hassan, K. Chah, M. C. DeRosa, E. Goormaghtigh, R. Wattiez, and C. Caucheteur, “Multimodal plasmonic optical fiber grating aptasensor,” Opt. Express 28, 7539 (2020).
[Crossref]

M. Loyez, E. M. Hassan, M. Lobry, F. Liu, C. Caucheteur, R. Wattiez, M. C. DeRosa, W. G. Willmore, and J. Albert, “Rapid detection of circulating breast cancer cells using a multiresonant optical fiber aptasensor with plasmonic amplification,” ACS Sens. 5, 454–463 (2020).
[Crossref]

R. Wang, Z. Ren, D. Kong, B. Hu, and Z. He, “Highly sensitive label-free biosensor based on graphene-oxide functionalized micro-tapered long period fiber grating,” Opt. Mater. (Amst) 109, 110253 (2020).
[Crossref]

B. Peeters, S. Safdar, D. Daems, P. Goos, D. Spasic, and J. Lammertyn, “Solid-phase PCR-amplified DNAzyme activity for real-time FO-SPR detection of the MCR-2 gene,” Anal. Chem. 92 , 10783–10791 (2020).
[Crossref]

H. Fan, L. Chen, and X. Bao, “Fiber-optic ultrasound transmitter based on multi-mode interference in curved adhesive waveguide,” IEEE Photon. Technol. Lett. 32, 325–328 (2020).
[Crossref]

H. Fan, L. Zhang, S. Gao, L. Chen, and X. Bao, “Ultrasound sensing based on an in-fiber dual-cavity Fabry-Pérot interferometer,” Opt. Lett. 44, 3606–3609 (2020).
[Crossref]

H. Fan, L. Chen, and X. Bao, “Chalcogenide microfiber-assisted silica microfiber for ultrasound detection,” Opt. Lett. 45, 1128–1131 (2020).
[Crossref]

H. Fan, W. Ma, L. Chen, and X. Bao, “Ultracompact twisted silica taper for 20 kHz to 94 MHz ultrasound sensing,” Opt. Lett. 45, 3889–3892 (2020).
[Crossref]

C. Shen, D. Liu, X. Lian, T. Lang, C. Zhao, Y. Semenova, and J. Albert, “Microfluidic flow direction and rate vector sensor based on a partially gold-coated TFBG,” Opt. Lett. 45, 2776–2779 (2020).
[Crossref]

Y. Chen, Y. Hu, H. Cheng, F. Yan, Q. Lin, Y. Chen, P. Wu, L. Chen, G. Liu, G. Peng, Y. Luo, and Z. Chen, “Side-polished single-mode-multimode-single-mode fiber structure for the vector magnetic field sensing,” J. Lightwave Technol. 38 , 5837–5843 (2020).
[Crossref]

J. Huang, L. A. Blanquer, J. Bonefacino, E. R. Logan, D. A. D. Corte, C. Delacourt, B. M. Gallant, S. T. Boles, J. R. Dhan, H.-Y. Tam, and J.-M. Tarascon, “Operando decoding of chemical and thermal events in commercial Na (Li)-ion cells via optical sensors,” Nat. Energy 5 , 674–683 (2020).
[Crossref]

E. Makhneva, L. Barillas, Z. Farka, M. Pastucha, P. Skládal, K.-D. Weltmann, and K. Fricke, “Functional plasma polymerized surfaces for biosensing,” ACS Appl. Mater. Interfaces 12, 17100–17112 (2020).
[Crossref]

L. Fazzi and R. M. Groves, “Demodulation of a tilted fibre Bragg grating transmission signal using α-shape modified Delaunay triangulation,” Measurement 166, 108197 (2020).
[Crossref]

M. Lobry, M. Loyez, K. Chah, E. M. Hassan, E. Goormaghtigh, M. C. DeRosa, R. Wattiez, and C. Caucheteur, “HER2 biosensing through SPR-envelope tracking in plasmonic optical fiber gratings,” Biomed. Opt. Express 11, 4862–4871 (2020).
[Crossref]

J. Jin, Y. Zhang, Y. Zhu, D. Zhang, and H. Zhang, “Analysis and correction method of axial strain error in multi-core fiber shape sensing,” IEEE Sensors J. 20, 12716–12722 (2020).
[Crossref]

S. Bandyopadhyay, L. shao, M. Smietana, C. Wang, J. Hu, G. Wang, W. He, G. Gu, and Y. Yang, “Employing higher order cladding modes of fiber Bragg grating for analysis of refractive index change in volume and at the surface,” IEEE Photonics J. 12, 7100313 (2020).
[Crossref]

F. Ouellette, J. Li, Z. Ou, and J. Albert, “High-resolution interrogation of tilted fiber Bragg gratings using an extended range dual wavelength differential detection,” Opt. Express 28, 14662–14676 (2020).
[Crossref]

K. A. Tomyshev, E. S. Manuilovich, D. K. Tazhetdinova, E. I. Dolzhenko, and O. V. Butov, “High-precision data analysis for TFBG-assisted refractometer,” Sens. Act. A 308, 112016 (2020).
[Crossref]

Y. Yang, J. Wu, M. Wang, Q. Wang, Q. Yu, and K. P. Chen, “Fast demodulation of fiber Bragg grating wavelength from low-resolution spectral measurements using Buneman frequency estimation,” J. Lightwave Technol. 38, 5142–5148 (2020).
[Crossref]

J. Wang, T. Huang, F. Duan, Q. Cheng, F. Zhang, and X. Qu, “Fast peak-tracking method for FBG reflection spectrum and nonlinear error compensation,” Opt. Lett. 45, 451–454 (2020).
[Crossref]

A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Femtosecond laser inscribed tilted gratings for leaky mode excitation in optical fibers,” J. Lightwave Technol. 38 , 1921–1928 (2020).
[Crossref]

J. Villatoro, “Phase-shifted modal interferometers for high-accuracy optical fiber sensing,” Opt. Lett. 45, 21–24 (2020).
[Crossref]

J. Villatoro, J. Amorebieta, A. Ortega-Gomez, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Composed multicore fiber structure for direction-sensitive curvature monitoring,” APL Photonics 5, 070801 (2020).
[Crossref]

J. Amorebieta, A. Ortega-Gomez, G. Durana, R. Fernández, E. Antonio-Lopez, A. Schülzgen, J. Zubia, R. Amezcua-Correa, and J. Villatoro, “Highly sensitive multicore fiber accelerometer for low frequency vibration sensing,” Sci. Rep. 10, 1–11 (2020).
[Crossref]

E. I. Golant, A. B. Pashkovskii, and K. M. Golant, “Lossy mode resonance in an etched-out optical fiber taper covered by a thin ITO layer,” Appl. Opt. 59, 9254–9258 (2020).
[Crossref]

R. Zhou, X. Qiao, R. Wang, F. Chen, and W. Ma, “An optical fiber sensor based on lateral-offset spliced seven-core fiber for bending and stretching strain measurement,” IEEE Sens. J. 20, 5915–5920 (2020).
[Crossref]

Z. Li, Y.-X. Zhang, W.-G. Zhang, L.-X. Kong, Y. Yue, and T.-Y. Yan, “Parallelized fiber Michelson interferometers with advanced curvature sensitivity plus abated temperature crosstalk,” Opt. Lett. 45, 4996–4999 (2020).
[Crossref]

D. Guo, L. Wu, H. Yu, A. Zhou, Q. Li, F. Mumtaz, C. Du, and W. Hu, “Tapered multicore fiber interferometer for refractive index sensing with graphene enhancement,” Appl. Opt. 59, 3927–3932 (2020).
[Crossref]

D. Sun, S. Xu, Y. Fu, and J. Ma, “Fast response microfiber-optic pH sensor based on a polyaniline sensing layer,” Appl. Opt. 59, 11261–11265 (2020).
[Crossref]

Y. Zhao, J. Zhao, and Q. Zhao, “Review of no-core optical fiber sensor and applications,” Sens. Actuators, A 313, 112160 (2020).
[Crossref]

K. Wang, X. Dong, M. H. Köhler, P. Kienle, Q. Bian, M. Jakobi, and A. W. Koch, “Advances in optical fiber sensors based on multimode interference (MMI): a review,” IEEE Sens. J. 21, 132–142 (2020).
[Crossref]

F. Liu, X. Zhang, T. Guo, and J. Albert, “Optical detection of the percolation threshold of nanoscale silver coatings with optical fiber gratings,” APL Photonics 5, 076101 (2020).
[Crossref]

F. Mumtaz, P. Cheng, C. Li, S. Cheng, C. Du, M. Yang, Y. Dai, and W. Hu, “A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer,” IEEE Sens. J. 20, 7074–7081 (2020).
[Crossref]

W. Hu, C. Li, S. Cheng, F. Mumtaz, C. Du, and M. Yang, “Etched multicore fiber Bragg gratings for refractive index sensing with temperature in-line compensation,” OSA Continuum 3 , 1058–1067 (2020).
[Crossref]

D. Budnicki, D. Budnicki, I. Parola, Ł Szostkiewicz, K. Markiewicz, Z. Hołdyński, G. Wojcik, M. Makara, K. Poturaj, M. Kuklińska, P. Mergo, M. Napierała, and T. Nasiłowski, “All-fiber vector bending sensor based on a multicore fiber with asymmetric air-hole structure,” J. Lightwave Technol. 38, 6685–6690 (2020).
[Crossref]

J. Zhao, J. Xu, C. Wang, Y. Liu, and Z. Yang, “Experimental demonstration of multi-parameter sensing based on polarized interference of polarization-maintaining few-mode fibers,” Opt. Express 28, 20372–20378 (2020).
[Crossref]

X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2015-2019),” Anal. Chem. 92, 397–430 (2020).
[Crossref]

I. Ashry, Y. Mao, A. Trichili, B. Wang, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “A review of using few-mode fibers for optical sensing,” IEEE Access 8, 179592–179605 (2020).
[Crossref]

X. Gao, T. Ning, C. Zhang, J. Xu, J. Zheng, H. Lin, J. Li, L. Pei, and H. You, “A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing,” Opt. Commun. 454, 124441 (2020).
[Crossref]

E. S. Manuylovich, V. V. Dvoyrin, and S. K. Turitsyn, “Fast mode decomposition in few-mode fibers,” Nat. Commun. 11, 5507 (2020).
[Crossref]

Z. Luo, H. Yu, Y. Zheng, Z. Zheng, Y. Li, and X. Jiang, “Selective mode excitation in a few-mode photonic crystal fiber for strain sensing with restrained temperature response,” J. Lightwave Technol. 38, 4560–4571 (2020).
[Crossref]

C. Wang, C. Pan, J. Xu, Z. Yang, J. Zhao, and Z. Huang, “Analysis of misalignment, twist, and bend in few-mode fibers using spatially and spectrally resolved imaging,” Opt. Fiber Technol. 56, 102205 (2020).
[Crossref]

2019 (44)

L. Grüner-Nielsen, N. M. Mathew, and K. Rottwitt, “Characterization of few mode fibers and devices,” Opt. Fiber Technol. 52, 101972 (2019).
[Crossref]

S. A. Jacobs, “Failure of the weakly guiding approximation for few-mode fiber index profiles,” J. Lightwave Technol. 37, 5076–5082 (2019).
[Crossref]

S. Pevec and D. Donlagić, “Multiparameter fiber-optic sensors: a review,” Opt. Eng. 58 , 072009 (2019).
[Crossref]

A. Urrutia, I. Del Villar, P. Zubiate, and C. R. Zamarreño, “A comprehensive review of optical fiber refractometers: toward a standard comparative criterion,” Laser Photonics Rev. 13 , 1900094 (2019).
[Crossref]

P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: review and perspective,” Appl. Phys. Rev. 6, 041302 (2019).
[Crossref]

X. Liang, Y. Li, Z. Geng, and Z. Liu, “Selective transverse mode operation of a fiber laser based on few-mode FBG for rotation sensing,” Opt. Express 27, 37964–37974 (2019).
[Crossref]

M. Yang, J. Yang, C. Guan, M. Wang, P. Geng, Y. Shen, J. Zhang, J. Shi, J. Yang, and L. Yuan, “Refractive index sensor based on etched eccentric core few-mode fiber dual-mode interferometer,” Opt. Express 27, 28104–28113 (2019).
[Crossref]

B. J. Ávila, J. N. Hernández, S. M. Toxqui Rodríguez, and B. M. Rodríguez-Lara, “Symmetric supermodes in cyclic multicore fibers,” OSA Continuum 2 , 515–522 (2019).
[Crossref]

S. Guvenc Kilic, Y. Zhu, Q. Sheng, M. Naci Inci, and M. Han, “Refractometer with etched chirped fiber Bragg grating Fabry–Perot interferometer in multicore fiber,” IEEE Photonics Technol. Lett. 31, 575–578 (2019).
[Crossref]

P. Li, P. Tian, C. Guan, Z. Zhu, Y. Li, J. Yang, J. Shi, and L. Yuan, “Heterogeneous double period array multicore fiber and its application in Bragg grating sensor,” IEEE Sens. J. 19, 6193–6196 (2019).
[Crossref]

Y. Liu, A. Zhou, and L. Yuan, “Gelatin-coated Michelson interferometric humidity sensor based on a multicore fiber with helical structure,” J. Lightwave Technol. 37, 2452–2457 (2019).
[Crossref]

J. Madrigal, D. Barrera, and S. Sales, “Refractive index and temperature sensing using inter-core crosstalk in multicore fibers,” J. Lightwave Technol. 37, 4703–4709 (2019).
[Crossref]

S. Korposh, S. W. James, S.-W. Lee, and R. P. Tatam, “Tapered optical fibre sensors: current trends and future perspectives,” Sensors 19, 2294 (2019).
[Crossref]

A. D. D. Le, J. Hwang, M. Yusuf, K. H. Park, S. Park, and J. Kim, “Simultaneous measurement of humidity and temperature with CYTOP-reduced graphene oxide-overlaid two-mode optical fiber sensor,” Sens. Actuators B 298, 126841 (2019).
[Crossref]

J. W. Costa, M. A. R. Franco, V. A. Serrão, C. M. B. Cordeiro, and M. T. R. Giraldi, “Macrobending SMS fiber-optic anemometer and flow sensor,” Opt. Fiber Technol. 52, 101981 (2019).
[Crossref]

Z. Shuo, D. Sifan, W. Zemin, S. Cuiting, C. Xudong, M. Yiwei, Z. Lei, L. Chunlian, G. Tao, Y. Wenlei, and Y. Libo, “A miniature SMS-LPG bending sensor with high sensitivity based on multimode fiber embedded-LPG,” Sens. Actuators, A 295, 31–36 (2019).
[Crossref]

J. Amorebieta, G. Durana, A. Ortega-Gomez, R. Fernández, J. Velasco, I. S. de Ocáriz, J. Zubia, J. E. Antonio-López, A. Schülzgen, and R. Amezcua-Correa, “Packaged multi-core fiber interferometer for high-temperature sensing,” J. Lightwave Technol. 37, 2328–2334 (2019).
[Crossref]

D. Feng, J. Albert, Y. Jiang, C. Liu, B. Jiang, H. Wang, and J. Zhao, “Symmetry selective cladding modes coupling in ultrafast-written fiber Bragg gratings in two-mode fiber,” Opt. Express 27, 18410–18420 (2019).
[Crossref]

F. Liu and J. Albert, “40 GHz-rate all-optical cross-modulation of core-guided near infrared light in single mode fiber by surface plasmons on gold-coated tilted fiber Bragg gratings,” APL Photonics 4, 126104 (2019).
[Crossref]

M. P. Fernandez, L. A. Bulus Rossini, J. L. Cruz, M. V. Andres, and P. A. Costanzo Caso, “High-speed and high-resolution interrogation of FBG sensors using wavelength-to-time mapping and gaussian filters,” Opt. Express 27, 36815–36823 (2019).
[Crossref]

T. Gang, F. Liu, M. Hu, and J. Albert, “Integrated differential area method for variable sensitivity interrogation of tilted fiber Bragg grating sensors,” J. Lightwave Technol. 37, 4531–4536 (2019).
[Crossref]

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkins, P. Dragic, and J. Ballato, “Overview of high temperature fibre Bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibres,” J. Phys.: Photonics 1, 042001 (2019).
[Crossref]

F. Khan, A. Denasi, D. Barrera, J. Madrigal, S. Sales, and S. Misra, “Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments,” IEEE Sens. J. 19, 5878–5884 (2019).
[Crossref]

A. Shakeri, N. A. Jarad, A. Leung, L. Soleymani, and T. F. Didar, “Biofunctionalization of glass- and paper-based microfluidic devices: a review,” Adv. Mater. Interfaces 6, 1–16 (2019).
[Crossref]

Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic nanoparticles functionalized few-mode-fiber-based plasmonic vector magnetometer,” Nanomaterials 9 , 785 (2019).
[Crossref]

M. Nascimento, S. Movais, M. Ding, M. S. Ferreira, S. Koch, S. Passerini, and J. Pinto, “Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries,” J. Power Sources 410, 1–9 (2019).
[Crossref]

M. Ma, H. Chen, S. Li, X. Jing, W. Zhang, and M. Wang, “Analysis of a magnetic field sensor based on a Sagnac interferometer using a magnetic fluid-filled birefringent photonic crystal fiber,” IEEE Photonics J. 11 , 1–10 (2019).
[Crossref]

L. H. J. Raijmakers, D. L. Danilov, R. A. Eichel, and P. H. L. Notten, “A review on various temperature-indication methods for Li-ion batteries,” Appl. Energy 240, 918–945 (2019).
[Crossref]

J. Peng, X. Zhou, S. Jia, Y. Jin, S. Xu, and J. Chen, “High precision strain monitoring for lithium ion batteries based on fiber Bragg grating sensors,” J. Power Sources 443, 226692 (2019).
[Crossref]

F. Tang, Z. Li, Y. Chen, H. N. Li, J. Huang, and M. J. O’Keefe, “Monitoring passive film growth on steel using Fe-C coated long period grating fiber sensor,” IEEE Sens. J. 19, 6748–6755 (2019).
[Crossref]

Y. Si, J. Lao, X. Zhang, Y. Liu, S. Cai, A. G. Vila, K. Li, Y. Huang, Y. Yuan, C. Caucheteur, and T. Guo, “Electrochemical plasmonic fiber-optic sensors for ultra-sensitive heavy metal detection,” J. Lightwave Technol. 37, 3495–3502 (2019).
[Crossref]

N. A. M. Zainuddin, M. M. Ariannejad, P. T. Arasu, S. W. Harun, and R. Zakaria, “Investigation of cladding thicknesses on silver SPR based side-polished optical fiber refractive-index sensor,” Results Phys. 13, 102255 (2019).
[Crossref]

S. Barrias, J. R. Fernandes, J. E. Eiras-Dias, J. Brazão, and P. Martins-Lopes, “Label free DNA-based optical biosensor as a potential system for wine authenticity,” Food Chem. 270, 299–304 (2019).
[Crossref]

M. Loyez, M. Lobry, R. Wattiez, and C. Caucheteur, “Optical fiber gratings immunoassays,” Sensors 19, 2595 (2019).
[Crossref]

M. Sypabekova, S. Korganbayev, Á González-Vila, C. Caucheteur, M. Shaimerdenova, T. Ayupova, A. Bekmurzayeva, L. Vangelista, and D. Tosi, “Functionalized etched tilted fiber Bragg grating aptasensor for label-free protein detection,” Biosens. Bioelectron. 146, 111765 (2019).
[Crossref]

A. Celebanska, Y. Chiniforooshan, M. Janik, P. Mikulic, B. Sellamuthu, R. Walsh, J. Perreault, and W. J. Bock, “Label-free cocaine aptasensor based on a long-period fiber grating,” Opt. Lett. 44, 2482 (2019).
[Crossref]

M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
[Crossref]

S. M. Tripathi, K. Dandapat, W. J. Bock, P. Mikulic, J. Perreault, and B. Sellamuthu, “Gold coated dual-resonance long-period fiber gratings (DR-LPFG) based aptasensor for cyanobacterial toxin detection,” Sens. Bio-Sensing Res. 25, 100289 (2019).
[Crossref]

Y. Zhao, R.-J. Tong, F. Xia, and Y. Peng, “Current status of optical fiber biosensor based on surface plasmon resonance,” Biosens. Bioelectron. 142, 111505 (2019).
[Crossref]

M. Loyez, C. Ribaut, C. Caucheteur, and R. Wattiez, “Functionalized gold electroless-plated optical fiber gratings for reliable surface biosensing,” Sens. Act B 280, 54–61 (2019).
[Crossref]

J. Lao, L. Han, Z. Wu, X. Zhang, Y. Huang, Y. Tang, and T. Guo, “Gold nanoparticle-functionalized surface plasmon resonance optical fiber biosensor: in situ detection of thrombin with 1 nM detection limit,” J. Lightwave Technol. 37, 2748–2755 (2019).
[Crossref]

S. S. Cai, Á González-Vila, X. J. Zhang, T. Guo, and C. Caucheteur, “Palladium-coated plasmonic optical fiber gratings for hydrogen detection,” Opt. Lett. 44 , 4483–4486 (2019).
[Crossref]

M. Loyez, J. Larrieu, S. Chevineau, M. Remmelink, D. Leduc, B. Bondue, P. Lambert, J. Devière, R. Wattiez, and C. Caucheteur, “In situ cancer diagnosis through online plasmonics,” Biosens. Bioelectron. 131, 104–112 (2019).
[Crossref]

J. Koppert, H. Jean-Ruel, D. O’Neill, C. Harder, W. Willmore, A. Ianoul, and J. Albert, “Self-heating tilted fiber Bragg grating device for melt curve analysis of solid-phase DNA hybridization and thermal cycling,” Anal. Bioanal. Chem. 411, 6813–6823 (2019).
[Crossref]

2018 (35)

S. Ohayon, A. Caravaca-Aguirre, R. Piestun, and J. J. DiCarlo, “Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging,” Biomed. Opt. Express 9, 1492 (2018).
[Crossref]

J. Desroches, M. Jermyn, M. Pinto, F. Picot, M.-A. Tremblay, S. Obaid, E. Marple, K. Urmey, D. Trudel, G. Soulez, M.-C. Guiot, B. C. Wilson, K. Petrecca, and F. Leblond, “A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy,” Sci. Rep. 8, 1792 (2018).
[Crossref]

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “Three-dimensional correlative single-cell imaging utilizing fluorescence and refractive index tomography,” J. Biophotonics 11 , 1–11 (2018).
[Crossref]

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

L. L. Liu, L. Marques, R. Correia, S. P. Morgan, S. W. Lee, P. Tighe, L. Fairclough, and S. Korposh, “Highly sensitive label-free antibody detection using a long period fibre grating sensor,” Sens. Act. B 271, 24–32 (2018).
[Crossref]

A. M. Abdalla, S. Hossain, O. B. Nisfindy, A. T. Azad, M. Dawood, and A. K. Azad, “Hydrogen production, storage, transportation and key challenges with applications: a review,” Energy Convers. Manage. 165, 602–627 (2018).
[Crossref]

J. Nakayama, N. Y. Kasai, T. Shibutani, and A. Miyake, “Security risk analysis of a hydrogen fueling station with an on-site hydrogen production system involving methylcyclohexane,” Int. J. Hydrogen Energy 44 , 9110–9119 (2018).
[Crossref]

H. E. Joe, H. Yun, S.-H. Jo, M. B. G. Jun, and B. K. Min, “A review on optical fiber sensors for environmental monitoring,” Int. J. Precis. Eng. Manuf. Technol. 5 , 173–191 (2018).
[Crossref]

J. M. M. M. de Almeida, H. Vasconcelos, P. A. S. Jorge, and L. Coelho, “Plasmonic optical fiber sensor based on double step growth of gold nano-islands,” Sensors 18 , 1–13 (2018).
[Crossref]

Y. V. Stebunov, D. I. Yakubovsky, D. Y. Fedyanin, A. V. Arsenin, and V. S. Volkov, “Superior sensitivity of copper-based plasmonic biosensors,” Langmuir 34, 4681–4687 (2018).
[Crossref]

W. Hu, Y. Huang, C. Chen, Y. Liu, T. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sens. Act. B 264, 440–447 (2018).
[Crossref]

B. Jiang, K. Zhou, C. Wang, Q. Sun, G. Yin, Z. Tai, K. Wilson, J. Zhao, and L. Zhang, “Label-free glucose biosensor based on enzymatic graphene oxide-functionalized tilted fiber grating,” Sens. Act. B. 254, 1033–1039 (2018).
[Crossref]

B. Luo, Y. Xu, S. Wu, M. Zhao, P. Jiang, S. Shi, Z. Zhang, Y. Wang, L. Wang, and Y. Liu, “A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus,” Biosens. Bioelectron. 100, 169–175 (2018).
[Crossref]

A. Bekmurzayeva, K. Dukenbayev, M. Shaimerdenova, I. Bekniyazov, T. Ayupova, M. Sypabekova, C. Molardi, and D. Tosi, “Etched fiber Bragg grating biosensor functionalized with aptamers for detection of thrombin,” Sensors 18 , 4298 (2018).
[Crossref]

F. Esposito, L. Sansone, C. Taddei, S. Campopiano, M. Giordano, and A. Iadicicco, “Ultrasensitive biosensor based on long period grating coated with polycarbonate-graphene oxide multilayer,” Sens. Act. B 274, 517–526 (2018).
[Crossref]

C. Shen, C. Zhong, D. Liu, X. Xian, J. Zheng, J. Wang, Y. Semenova, G. Farrell, J. Albert, and J. F. Donegan, “Measurements of milli-Newton surface tension forces with tilted fiber Bragg gratings,” Opt. Lett. 43, 2–5 (2018).
[Crossref]

C. Shen, X. Lian, V. Kavungal, C. Zhong, D. Liu, Y. Semenova, G. Farrell, J. Albert, and J. F. Donegan, “Optical spectral sweep comb liquid flow rate sensor,” Opt. Lett. 43, 751–754 (2018).
[Crossref]

M. Nascimento, T. Paixão, M. S. Ferreira, and J. Pinto, “Thermal mapping of a lithium polymer batteries pack with FBGs network,” Batteries 4 , 67 (2018).
[Crossref]

A. Layeghi and H. Latifi, “Magnetic field vector sensor by a nonadiabatic tapered Hi-Bi fiber and ferrofluid nanoparticles,” Opt. Laser Technol. 102, 184–190 (2018).
[Crossref]

M. Nascimento, M. S. Ferreira, and J. L. Pinto, “Simultaneous sensing of temperature and bi-directional strain in a prismatic Li-ion battery,” Batteries 4 , 23 (2018).
[Crossref]

J. Lao, P. Sun, F. Liu, X. Zhang, C. Zhao, W. Mai, T. Guo, G. Xiao, and J. Albert, “In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage,” Light: Sci. Appl. 7, 1–12 (2018).
[Crossref]

M. Loyez, J. Albert, C. Caucheteur, and R. Wattiez, “Cytokeratins biosensing using tilted fiber gratings,” Biosensors 8, 1–8 (2018).
[Crossref]

M. Asal, Ö Özen, M. Şahinler, and İ Polatoğlu, “Recent developments in enzyme, DNA and immuno-based biosensors,” Sensors 18 , 1924 (2018).
[Crossref]

T. Kissinger, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Dynamic fiber-optic shape sensing using fiber segment interferometry,” J. Lightwave Technol. 36, 917–925 (2018).
[Crossref]

K. A. Tomyshev, D. K. Tazhetdinova, E. S. Manuilovich, and O. V. Butov, “High-resolution fiber optic surface plasmon resonance sensor for biomedical applications,” J. Appl. Phys. 124, 113106 (2018).
[Crossref]

F. Liu, X. Tong, C. Zhang, C. Deng, Q. Xiong, Z. Zheng, and P. Wang, “Multi-peak detection algorithm based on the Hilbert transform for optical FBG sensing,” Opt. Fiber Technol. 45, 47–52 (2018).
[Crossref]

X. Zhang, S. Cai, F. Liu, H. Chen, P. Yan, Y. Yuan, T. Guo, and J. Albert, “In situ determination of the complex permittivity of ultrathin H2-infused palladium coatings for plasmonic fiber optic sensors in the near infrared,” J. Mater. Chem. C 6, 5161–5170 (2018).
[Crossref]

C. Zhang, T. Ning, J. Zheng, X. Gao, H. Lin, J. Li, L. Pei, and X. Wen, “Miniature optical fiber temperature sensor based on FMF-SCF structure,” Opt. Fiber Technol. 41, 217–221 (2018).
[Crossref]

Y. Li, H. Ma, L. Gan, Q. Liu, Z. Yan, D. Liu, and Q. Sun, “Immobilized optical fiber microprobe for selective and high sensitive glucose detection,” Sens. Actuators B 255, 3004–3010 (2018).
[Crossref]

P. Wang, H. Zhao, X. Wang, G. Farrell, and G. Brambilla, “A review of multimode interference in tapered optical fibers and related applications,” Sensors 18, 858 (2018).
[Crossref]

Y. Chunxia, D. Hui, D. Wei, and X. Chaowei, “Weakly-coupled multicore optical fiber taper-based high-temperature sensor,” Sens. Actuators A 280, 139–144 (2018).
[Crossref]

Z. Zhao, Z. Liu, M. Tang, S. Fu, L. Wang, N. Guo, C. Jin, H. Y. Tam, and C. Lu, “Robust in-fiber spatial interferometer using multicore fiber for vibration detection,” Opt. Express 26, 29629–29637 (2018).
[Crossref]

D. Barrera, J. Madrigal, and S. Sales, “Long period gratings in multicore optical fibers for directional curvature sensor implementation,” J. Lightwave Technol. 36, 1063–1068 (2018).
[Crossref]

Y. Zhao, C. Wang, G. Yin, B. Jiang, K. Zhou, C. Mou, Y. Liu, L. Zhang, and T. Wang, “Simultaneous directional curvature and temperature sensor based on a tilted few-mode fiber Bragg grating,” Appl. Opt. 57, 1671–1678 (2018).
[Crossref]

W. Jin, Y. Xu, Y. Jiang, Y. Wu, S. Yao, S. Xiao, Y. Qi, W. Ren, and S. Jian, “Strain and temperature characteristics of the LP11 mode based on a few-mode fiber Bragg grating and core-offset splicing,” Laser Phys. 28 , 025103 (2018).
[Crossref]

2017 (45)

Y. Xu, G. Ren, Y. Jiang, Y. Gao, H. Li, W. Jin, Y. Wu, Y. Shen, and S. Jian, “Bending effect characterization of individual higher-order modes in few-mode fibers,” Opt. Lett. 42, 3343–3346 (2017).
[Crossref]

M. K. Annuar Zaini, Y.-S. Lee, K.-S. Lim, N. A. Mohd Nazal, M. H. Zohari, and H. Ahmad, “Axial stress profiling for few-mode fiber Bragg grating based on resonant wavelength shifts during etching process,” J. Opt. Soc. Am. B 34 , 1894–1898 (2017).
[Crossref]

D. Barrera, J. Madrigal, and S. Sales, “Tilted fiber Bragg gratings in multicore optical fibers for optical sensing,” Opt. Lett. 42, 1460–1463 (2017).
[Crossref]

G. Capilla-Gonzalez, D. A. May-Arrioja, D. Lopez-Cortes, and J. R. Guzman-Sepulveda, “Stress homogenization effect in multicore fiber optic bending sensors,” Appl. Opt. 56, 2273–2279 (2017).
[Crossref]

D. Zheng, J. Madrigal, D. Barrera, S. Sales, and J. Capmany, “Microwave photonic filtering for interrogating FBG-based multicore fiber curvature sensor,” IEEE Photonics Technol. Lett. 29, 1707–1710 (2017).
[Crossref]

I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]

D. A. May-Arrioja and J. R. Guzman-Sepulveda, “Highly sensitive fiber optic refractive index sensor using multicore coupled structures,” J. Lightwave Technol. 35, 2695–2701 (2017).
[Crossref]

W. Zhou, Y. Zhou, and J. Albert, “A true fiber optic refractometer,” Laser Photonics Rev. 11, 1600157 (2017).
[Crossref]

J. Villatoro, E. Antonio-Lopez, A. Schulzgen, and R. Amezcua-Correa, “Miniature multicore optical fiber vibration sensor,” Opt. Lett. 42, 2022–2025 (2017).
[Crossref]

R. Wang, M. Tang, S. Fu, Z. Feng, W. Tong, and D. Liu, “Spatially arrayed long period gratings in multicore fiber by programmable electrical arc discharge,” IEEE Photonics J. 9, 4500310 (2017).
[Crossref]

P. S. Westbrook, T. Kremp, K. S. Feder, W. Ko, E. M. Monberg, H. Wu, D. A. Simoff, T. F. Taunay, and R. M. Ortiz, “Continuous multicore optical fiber grating arrays for distributed sensing applications,” J. Lightwave Technol. 35, 1248–1252 (2017).
[Crossref]

S. Xiang, H. Xiongwei, Y. Luyun, D. Nengli, W. Jianjun, Z. Fangfang, P. Jingang, L. Haiqing, and L. Jinyan, “Helical long-period grating manufactured with a CO2 laser on multicore fiber,” Opt. Express 25, 10405–10412 (2017).
[Crossref]

C. Zhang, T. Ning, J. Li, L. Pei, C. Li, and H. Lin, “Refractive index sensor based on tapered multicore fiber,” Opt. Fiber Technol. 33, 71–76 (2017).
[Crossref]

M. Arjmand, H. Saghafifar, M. Alijanianzadeh, and M. Soltanolkotabi, “A sensitive tapered-fiber optic biosensor for the label-free detection of organophosphate pesticides,” Sens. Actuators B 249, 523–532 (2017).
[Crossref]

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and W. Ni, “High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure,” Opt. Commun. 405, 416–420 (2017).
[Crossref]

S. Dong, B. Dong, C. Yu, and Y. Guo, “High sensitivity optical fiber curvature sensor based on cascaded fiber interferometer,” J. Lightwave Technol. 36, 1125–1130 (2017).
[Crossref]

Z. Yan, Q. Sun, C. Wang, Z. Sun, C. Mou, K. Zhou, D. Liu, and L. Zhang, “Refractive index and temperature sensitivity characterization of excessively tilted fiber grating,” Opt. Express 25, 3336–3346 (2017).
[Crossref]

A. Theodosiou, A. Lacraz, A. Stassis, C. Koutsides, M. Komodromos, and K. Kalli, “Plane-by-plane femtosecond laser inscription method for single-peak Bragg gratings in multimode CYTOP polymer optical fiber,” J. Lightwave Technol. 35, 5404–5410 (2017).
[Crossref]

G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Express 7, 286–295 (2017).
[Crossref]

T. Guo, Á González-vila, M. Loyez, and C. Caucheteur, “Plasmonic optical fiber grating immunosensing: a review,” Sensors 17, 1–19 (2017).
[Crossref]

M. Shaimerdenova, A. Bekmurzayeva, M. Sypabekova, and D. Tosi, “Interrogation of coarsely sampled tilted fiber Bragg grating (TFBG) sensors with KLT,” Opt. Express 25, 33487–33496 (2017).
[Crossref]

D. Ganziy, B. Rose, and O. Bang, “Compact multichannel high-resolution micro-electro-mechanical systems-based interrogator for Fiber Bragg grating sensing,” Appl. Opt. 56, 3622–3627 (2017).
[Crossref]

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7, 4451 (2017).
[Crossref]

A. Zamora-Gálvez, E. Morales-Narváez, C. C. Mayorga-Martinez, and A. Merkoçi, “Nanomaterials connected to antibodies and molecularly imprinted polymers as bio/receptors for bio/sensor applications,” Appl. Mater. Today 9, 387–401 (2017).
[Crossref]

M. Oliverio, S. Perotto, G. C. Messina, L. Lovato, and F. De Angelis, “Chemical functionalization of plasmonic surface biosensors: A tutorial review on issues, strategies, and costs,” ACS Appl. Mater. Interfaces 9, 29394–29411 (2017).
[Crossref]

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors 7, 23 (2017).
[Crossref]

T. Yamanaka, H. Nakagawa, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “In situ Raman spectroscopic studies on concentration of electrolyte salt in lithium ion batteries by using ultrafine multifiber probes,” ChemSusChem 10 , 855–861 (2017).
[Crossref]

C. P. Grey and J. M. Tarascon, “Sustainability and in situ monitoring in battery development,” Nat. Mater. 16, 45–56 (2017).
[Crossref]

A. Raghavan, P. Kiesel, L. W. Sommer, J. Schwartz, A. Lochbaum, A. Hegyi, A. Schuh, K. Arakaki, B. Saha, A. Ganguli, K. H. Kim, C. Kim, H. J. Hah, S. kim, G.-O. Hwang, G.-C. Chung, B. Choi, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance,” J. Power Sources 341, 466–473 (2017).
[Crossref]

A. Ganguli, B. Saha, A. Raghavan, P. Kiesel, K. Arakaki, A. Schuh, J. Schwartz, A. Hegyi, L. W. Sommer, A. Lochbaum, S. Sahu, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: internal cell signals and utility for state estimation,” J. Power Sources 341, 474–482 (2017).
[Crossref]

A. R. Ghannoum, P. Nieva, A. Yu, and A. Khajepour, “Development of embedded fiber-optic evanescent wave sensors for optical characterization of graphite anodes in lithium-ion batteries,” ACS Appl. Mater. Interfaces 9 , 41284–41290 (2017).
[Crossref]

A. Fortier, M. Tsao, N. D. Williard, Y. Xing, and M. G. Pecht, “Preliminary study on integration of fiber optic Bragg grating sensors in li-ion batteries and in situ strain and temperature monitoring of battery cells,” Energies 10 , 838 (2017).
[Crossref]

X. Cheng and M. Pecht, “In situ stress measurement techniques on Li-ion battery electrodes: a review,” Energies 10, 591 (2017).
[Crossref]

Y. Chen, F. Tang, Y. Tang, M. J. O’Keefe, and G. Chen, “Mechanism and sensitivity of Fe-C coated long period fiber grating sensors for steel corrosion monitoring of RC structures,” Corros. Sci. 127, 70–81 (2017).
[Crossref]

X. Chen, F. Du, T. Guo, J. Lao, X. Zhang, Z. Zhang, F. Liu, J. Li, C. Chen, and B.-O. Guan, “Liquid crystal-embedded tilted fiber grating electric field intensity sensor,” J. Lightwave Technol. 35 , 3347–3353 (2017).
[Crossref]

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators B 238, 518–524 (2017).
[Crossref]

J. Yin, P. Yan, H. Chen, L. Yu, J. Jiang, M. Zhang, and S. Ruan, “All-fiber-optic vector magnetometer based on anisotropic magnetism-manipulation of ferromagnetism nanoparticles,” Appl. Phys. Lett. 110 , 231104 (2017).
[Crossref]

K. Shah, N. K. Sharma, and V. Sajal, “SPR based fiber optic sensor with bi layers of indium tin oxide and platinum: a theoretical evaluation,” Optik 135, 50–56 (2017).
[Crossref]

M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Act. B 250, 32–38 (2017).
[Crossref]

Y. Zhang, F. Wang, S. Qian, Z. Liu, Q. Wang, Y. Gu, Z. Wu, Z. Jing, C. Sun, and W. Peng, “A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein,” Sensors 17, 2259 (2017).
[Crossref]

C. Ribaut, M. Loyez, J. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref]

D. Daems, B. Peeters, F. Delport, T. Remans, J. Lammertyn, and D. Spasic, “Identification and quantification of celery allergens using fiber optic surface plasmon resonance PCR,” Sensors 17 , 1754 (2017).
[Crossref]

J. X. Dai, L. Zhu, G. P. Wang, F. Xiang, Y. H. Qin, M. Wang, and M. H. Yang, “Optical fiber grating hydrogen sensors: a review,” Sensors 17 , 577 (2017).
[Crossref]

P. Dimitriou and T. Tsujimura, “A review of hydrogen as a compression ignition engine fuel,” Int. J. Hydrogen Energy 42 , 24470–24486 (2017).
[Crossref]

Y. N. Zhang, H. Peng, X. Qian, Y. Zhang, G. An, and Y. Zhao, “Recent advancements in optical fiber hydrogen sensors,” Sens. Actuators, B 244, 393–416 (2017).
[Crossref]

2016 (24)

S. E. Hosseini and M. A. Wahid, “Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development,” Renew. Sustain. Energy Rev. 57, 850–866 (2016).
[Crossref]

R. Tabassum and B. D. Gupta, “Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium,” J. Opt. 18 , 015004 (2016).
[Crossref]

I. Antohe, K. Schouteden, P. Goos, F. Delport, D. Spasic, and J. Lammertyn, “Thermal annealing of gold coated fiber optic surfaces for improved plasmonic biosensing,” Sens. Actu. B 229, 678–685 (2016).
[Crossref]

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref]

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref]

A. Baliyan, S. Sital, U. Tiwari, R. Gupta, and E. K. Sharma, “Long period fiber grating based sensor for the detection of triacylglycerides,” Biosens. Bioelectron. 79, 693–700 (2016).
[Crossref]

F. Shi, X. Bai, F. Wang, F. Pang, S. Pu, and X. Zeng, “All-fiber magnetic field sensor based on hollow optical fiber and magnetic fluid,” IEEE Sens. J. 17 , 619–622 (2016).
[Crossref]

Z. Zhang, T. Guo, X. Zhang, J. Xu, W. Xie, M. Nie, Q. Wu, B. O. Guan, and J. Albert, “Plasmonic fiber-optic vector magnetometer,” Appl. Phys. Lett. 108 , 101105 (2016).
[Crossref]

A. Czapla, W. J. Bock, T. R. Wolinski, P. Mikulic, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Improving the electric field sensing capabilities of the long-period fiber grating coated with a liquid crystal layer,” Opt. Express 24, 5662–5673 (2016).
[Crossref]

Y. Chen, F. Tang, Y. Bao, Y. Tang, and G. Chen, “A Fe-C coated long-period fiber grating sensor for corrosion-induced mass loss measurement,” Opt. Lett. 41, 2306–2309 (2016).
[Crossref]

Y. Yuan, T. Guo, X. Qiu, J. Tang, Y. Huang, L. Zhuang, S. Zhou, Z. Li, B. Guan, X. Zhang, and J. Albert, “Electrochemical surface plasmon resonance fiber-optic sensor: in-situ detection of electroactive biofilms,” Anal. Chem. 88, 7609–7616 (2016).
[Crossref]

S. Novais, M. Nascimento, L. Grande, M. F. Domingues, P. Antunes, N. Alberto, C. Leitao, R. Oliveira, S. Koch, G. T. Kim, S. Passerini, and J. Pinto, “Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors,” Sensors 16 , 1394 (2016).
[Crossref]

Y. Liu and J. Yu, “Oriented immobilization of proteins on solid supports for use in biosensors and biochips: a review,” Microchim. Acta 183, 1–19 (2016).
[Crossref]

D. Feng, X. Qiao, and J. Albert, “Off-axis ultraviolet-written fiber Bragg gratings for directional bending measurements,” Opt. Lett. 41, 1201–1204 (2016).
[Crossref]

X. Rosello-Mecho, M. Delgado-Pinar, A. Diez, and M. V. Andres, “Measurement of Pockels’ coefficients and demonstration of the anisotropy of the elasto-optic effect in optical fibers under axial strain,” Opt. Lett. 41, 2934–2937 (2016).
[Crossref]

T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous measurement of liquid level and temperature using tilted fiber Bragg grating,” IEEE Sens. J. 16, 1205–1209 (2016).
[Crossref]

P. Kisala, D. Harasim, and J. Mroczka, “Temperature-insensitive simultaneous rotation and displacement (bending) sensor based on tilted fiber Bragg grating,” Opt. Express 24, 29922–29929 (2016).
[Crossref]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref]

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightwave Technol. 34, 55–66 (2016).
[Crossref]

J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41, 832–835 (2016).
[Crossref]

T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, F. Yamamoto, and K. Nakajima, “Fiber twisting- and bending-induced adiabatic/nonadiabatic super-mode transition in coupled multicore fiber,” J. Lightwave Technol. 34, 1228–1237 (2016).
[Crossref]

Z. Yan, H. Wang, C. Wang, Z. Sun, G. Yin, K. Zhou, Y. Wang, W. Zhao, and L. Zhang, “Theoretical and experimental analysis of excessively tilted fiber gratings,” Opt. Express 24, 12107–12115 (2016).
[Crossref]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

M. Becker, A. Lorenz, T. Elsmann, I. Latka, A. Schwuchow, S. Dochow, R. Spittel, J. Kobelke, J. Bierlich, K. Schuster, M. Rothhardt, and H. Bartelt, “Single-mode multicore fibers with integrated Bragg filters,” J. Lightwave Technol. 34, 4572–4578 (2016).
[Crossref]

2015 (24)

F. Y. Chan, G. Mudhana, and P. Shum, “Comparison of bandwidth and sensitivity of long-period gratings in single-mode and few-mode fibers,” Appl. Opt. 54, 6558–6565 (2015).
[Crossref]

L. Wang and S. LaRochelle, “Design of eight-mode polarization-maintaining few-mode fiber for multiple-input multiple-output-free spatial division multiplexing,” Opt. Lett. 40, 5846–5849 (2015).
[Crossref]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

A. Van Newkirk, J. E. Antonio-Lopez, G. Salceda-Delgado, M. U. Piracha, R. Amezcua-Correa, and A. Schulzgen, “Multicore fiber sensors for simultaneous measurement of force and temperature,” IEEE Photonics Technol. Lett. 27, 1523–1526 (2015).
[Crossref]

A. V. Newkirk, J. E. Antonio-Lopez, A. Velazquez-Benitez, J. Albert, R. Amezcua-Correa, and A. Schulzgen, “Bending sensor combining multicore fiber with a mode-selective photonic lantern,” Opt. Lett. 40, 5188–5191 (2015).
[Crossref]

M. S. Yoon, S. B. Lee, and Y. G. Han, “In-line interferometer based on intermodal coupling of a multicore fiber,” Opt. Express 23, 18316–18322 (2015).
[Crossref]

A. Radosavljević, A. Daničić, J. Petrovic, A. Maluckov, and L. Hadžievski, “Coherent light propagation through multicore optical fibers with linearly coupled cores,” J. Opt. Soc. Am. B 32 , 2520–2527 (2015).
[Crossref]

W. Ren, Z. Tan, and G. Ren, “Analytical formulation of supermodes in multicore fibers with hexagonally distributed cores,” IEEE Photon. J. 7, 7100311 (2015).
[Crossref]

T. A. Birks, I. Gris-Sanchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomsons, “The photonic lantern,” Adv. Opt. Photon. 7, 107–167 (2015).
[Crossref]

X. Q. Lei, Y. T. Yu, W. J. Feng, B. J. Peng, and X. D. Li, “A novel fiber temperature sensor with liquid-crystal filled SM-NC-SM structure,” J. Optoelectron. Laser 26, 2278–2282 (2015).
[Crossref]

H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 40, 5042–5045 (2015).
[Crossref]

I. Hernández-Romano, D. Monzón-Hernández, C. Moreno-Hernández, D. Moreno-Hernandez, and J. Villatoro, “Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer,” IEEE Photonics Techn. Lett. 27, 2591–2594 (2015).
[Crossref]

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating,” Opt. Lett. 40, 1713 (2015).
[Crossref]

D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact optical fiber 3D shape sensor based on a pair of orthogonal tilted fiber Bragg gratings,” Sci. Rep. 5, 17415 (2015).
[Crossref]

D. J. Mandia, W. Zhou, J. Albert, and S. T. Barry, “CVD on optical fibers: tilted fiber Bragg gratings as real-time sensing platforms,” Chem. Vap. Depos. 21, 4–20 (2015).
[Crossref]

D. J. Mandia, W. Zhou, M. J. Ward, H. Joress, J. J. Sims, J. B. Giorgi, J. Albert, and S. T. Barry, “The effect of ALD-grown Al2O3 on the refractive index sensitivity of CVD gold-coated optical fiber sensors,” Nanotechnology 26, 434002 (2015).
[Crossref]

M. M. Tefelska, T. R. Wolinski, S. Ertman, K. Milenko, R. Laczkowski, A. Siarkowska, and A. W. Domanski, “Electric field sensing with photonic liquid crystal fibers based on micro-electrodes systems,” J. Lightwave Technol. 33, 2405–2411 (2015).
[Crossref]

J. Yang, L. Zhou, J. Huang, C. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Act B 207, 477–480 (2015).
[Crossref]

B. Luo, Z. Yan, Z. Sun, Y. Liu, M. Zhao, and L. Zhang, “Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration,” Opt. Express 23, 32429 (2015).
[Crossref]

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87, 12024–12031 (2015).
[Crossref]

L. Coelho, J. M. M. M. de Almeida, J. L. Santos, and D. Viegas, “Fiber optic hydrogen sensor based on an etched Bragg grating coated with palladium,” Appl. Opt. 54 , 10342–10348 (2015).
[Crossref]

Y. H. Yang, F. L. Yang, H. Wang, W. Yang, and W. Jin, “Temperature-insensitive hydrogen sensor with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” J. Light. Technol 33 , 2566–2571 (2015).
[Crossref]

R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6, 1502 (2015).
[Crossref]

Z. P. Yu, L. Jin, L. H. Chen, J. Li, Y. Ran, and B. O. Guan, “Microfiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 27 , 2575–2578 (2015).
[Crossref]

2014 (19)

A. Hosoki, M. Nishiyama, H. Igawa, A. Seki, and K. Watanabe, “A hydrogen curing effect on surface plasmon resonance fiber optic hydrogen sensors using an annealed Au/Ta2O5/Pd multi-layers film,” Opt. Express 22 , 18556–18563 (2014).
[Crossref]

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56, 359–367 (2014).
[Crossref]

K. J. Huang, Y. J. Liu, H. B. Wang, T. Gan, Y. M. Liu, and L. L. Wang, “Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide-graphene composites and gold nanoparticles,” Sens. Act. B 191, 828–836 (2014).
[Crossref]

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[Crossref]

S. Lépinay, A. Ianoul, and J. Albert, “Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules,” Talanta 128, 401–407 (2014).
[Crossref]

S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52, 337–344 (2014).
[Crossref]

C. Shen, W. Zhou, and J. Albert, “Polarization-resolved evanescent wave scattering from gold-coated tilted fiber gratings,” Opt. Express 22, 5277 (2014).
[Crossref]

C. Shen, L. Xiong, A. Bialiayeu, Y. Zhang, and J. Albert, “Polarization-resolved near- and far-field radiation from near-infrared tilted fiber Bragg gratings,” J. Lightwave Technol. 32, 2157–2162 (2014).
[Crossref]

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanowire coatings on optical fibers,” J. Phys. Chem. C 118, 11035–11042 (2014).
[Crossref]

B. Gu, W. Qi, Y. Zhou, Z. Wu, P. P. Shum, and F. Luan, “Reflective liquid level sensor based on modes conversion in thin-core fiber incorporating tilted fiber Bragg grating,” Opt. Express 22, 11834–11839 (2014).
[Crossref]

D. Yang, L. Du, Z. Xu, Y. Jiang, J. Xu, M. Wang, Y. Bai, and H. Wang, “Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid,” Appl. Phys. Lett. 104 , 061903 (2014).
[Crossref]

S. Dong, S. Pu, and H. Wang, “Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with taper-like and lateral-offset fusion splicing,” Opt. Express 22 , 19108–19116 (2014).
[Crossref]

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Anomalous effective strain-optic constants of nonparaxial optical fiber mode,” Opt. Lett. 39, 578 (2014).
[Crossref]

H. J. W. M. Hoekstra and M. Hammer, “General relation for group delay and the relevance of group delay for refractometric sensing,” J. Opt. Soc. Am. B 31, 1561–1567 (2014).
[Crossref]

M. Kumar, A. Kumar, and S. M. Tripathi, “A comparison of temperature sensing characteristics of SMS structures using step and graded index multimode fibers,” Opt. Commun. 312, 222–226 (2014).
[Crossref]

Q. Wu, M. Yang, J. Yuan, H. P. Chan, Y. Ma, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “The use of a bend singlemode-multimode-singlemode (SMS) fibre structure for vibration sensing,” Opt. Laser Technol. 63, 29–33 (2014).
[Crossref]

J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000 °C,” Opt. Lett. 39, 4309–4312 (2014).
[Crossref]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C 118, 670–678 (2014).
[Crossref]

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express 22, 31665–31676 (2014).
[Crossref]

2013 (16)

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7, 83–108 (2013).
[Crossref]

M. Z. Alam and J. Albert, “Selective excitation of radially and azimuthally polarized optical fiber cladding modes,” J. Lightwave Technol. 31, 3167–3175 (2013).
[Crossref]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “In-line flat-top comb filter based on a cascaded all-solid photonic bandgap fiber intermodal interferometer,” Opt. Express 21, 17352–17358 (2013).
[Crossref]

A. M. Hatta, H. E. Permana, H. Setijono, A. Kusumawardhani, and Sekartedjo, “Strain measurement based on SMS fiber structure sensor and OTDR,” Microw. Opt. Technol. Lett. 55, 2576–2578 (2013).
[Crossref]

A. M. Hatta, K. Indriawati, T. Bestariyan, T. Humada, and Sekartedjo, “SMS fiber structure for temperature measurement using an OTDR,” Photonic Sens. 3, 262–266 (2013).
[Crossref]

Y. Zhang, X. Tian, L. Xue, Q. Zhang, L. Yang, and B. Zhu, “Super-high sensitivity of fiber temperature sensor based on leaky-mode bent SMS structure,” IEEE Photonics Technol. Lett. 25, 560–563 (2013).
[Crossref]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[Crossref]

G. Yang, C. Leitão, Y. Li, J. Pinto, and X. Jiang, “Real-time temperature measurement with fiber Bragg sensors in lithium batteries for safety usage,” Measurement 46 , 3166–3172 (2013).
[Crossref]

R. Q. Lv, Y. Zhao, D. Wang, and Q. Wang, “Magnetic fluid-filled optical fiber Fabry-Pérot sensor for magnetic field measurement,” IEEE Photonics Technol. Lett. 26 , 217–219 (2013).
[Crossref]

A. K. Trilling, J. Beekwilder, and H. Zuilhof, “Antibody orientation on biosensor surfaces: a minireview,” Analyst 138, 1619–1627 (2013).
[Crossref]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, A. Bialiayeu, Y. Zhang, P. G. Gordon, S. T. Barry, and J. Albert, “Polarization-dependent properties of the cladding modes of single mode fiber covered with gold nanoparticles,” Opt. Express 21, 245–255 (2013).
[Crossref]

D. J. Mandia, M. B. E. Griffiths, W. Zhou, P. G. Gordon, J. Albert, and S. T. Barry, “In situ deposition monitoring by a tilted fiber Bragg grating optical probe: probing nucleation in chemical vapour deposition of gold,” Phys. Procedia 46, 12–20 (2013).
[Crossref]

J. M. Renoirt, C. Zhang, M. Debliquy, M. G. Olivier, P. Megret, and C. Caucheteur, “High-refractive-index transparent coatings enhance the optical fiber cladding modes refractometric sensitivity,” Opt. Express 21, 29073–29082 (2013).
[Crossref]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, B. Song, and J. Wu, “Two-dimensional magnetic field vector sensor based on tilted fiber Bragg grating and magnetic fluid,” J. Lightwave Technol. 31 , 2599–2605 (2013).
[Crossref]

C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Express 21 , 382–390 (2013).
[Crossref]

S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photon. Technol. Lett. 25 , 401–403 (2013).
[Crossref]

2012 (6)

L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. Sun, X. Dong, and Y. Hou, “Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection,” IEEE Photonics J. 4 , 2095–2104 (2012).
[Crossref]

Y. Miao, K. Zhang, B. Liu, W. Lin, H. Zhang, Y. Lu, and J. Yao, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photonics Technol. Lett. 25 , 306–309 (2012).
[Crossref]

A. Bialiayeu, A. Bottomley, D. Prezgot, A. Ianoul, and J. Albert, “Plasmon-enhanced refractometry using silver nanowire coating on tilted fiber Bragg gratings,” Nanotechnology 23, 444012 (2012).
[Crossref]

G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett. 37, 1974–1976 (2012).
[Crossref]

J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express 20, 2967–2973 (2012).
[Crossref]

J. U. Thomas, N. Jovanovic, R. G. Krämer, G. D. Marshall, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings II: complete vectorial analysis,” Opt. Express 20 , 21434–21449 (2012).
[Crossref]

2011 (9)

J. U. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19 , 325–341 (2011).
[Crossref]

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Investigation of single-mode–multimode–single-mode and single-mode–tapered-multimode–single-mode fiber structures and their application for refractive index sensing,” J. Opt. Soc. Am. B 28, 1180–1186 (2011).
[Crossref]

L. Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers,” Opt. Mater. Express 1, 128–137 (2011).
[Crossref]

A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, “Self-optimized metal coating for fiber plasmonics by electroless deposition,” Opt. Express 19, 18742–18753 (2011).
[Crossref]

S. Mathews, G. Farrell, and Y. Semenova, “Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements,” Appl. Opt. 50, 2628–2635 (2011).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47, 271–272 (2011).
[Crossref]

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - a review,” Sens. Act. B 157 , 329–352 (2011).
[Crossref]

W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy 36 , 2462–2470 (2011).
[Crossref]

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83, 7027–7034 (2011).
[Crossref]

2010 (8)

L. Shao, L. Xiong, C. Chen, A. Laronche, and J. Albert, “Directional bend sensor based on re-grown tilted fiber Bragg grating,” J. Lightwave Technol. 28 , 2681–2687 (2010).
[Crossref]

M. M. Bilek and D. R. McKenzie, “Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants,” Biophys. Rev. 2, 55–65 (2010).
[Crossref]

R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283, 3149–3152 (2010).
[Crossref]

A. M. Hatta, Y. Semenova, G. Rajan, P. Wang, J. Zheng, and G. Farrell, “Analysis of temperature dependence for a ratiometric wavelength measurement system using SMS fiber structure based edge filters,” Opt. Commun. 283, 1291–1295 (2010).
[Crossref]

Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Bent SMS fibre structure for temperature measurement,” Electron. Lett. 46, 1129–1130 (2010).
[Crossref]

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18 , 22747–22761 (2010).
[Crossref]

I. Del Villar, C. R. Zamarreno, M. Hernaez, F. J. Arregui, and I. R. Matias, “Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications,” J. Lightwave Technol. 28, 111–117 (2010).
[Crossref]

D. Villar, C. R. Zamarreño, P. Sanchez, M. Hernaez, C. F. Valdivielso, F. J. Arregui, and I. R. Matias, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12, 095503 (2010).
[Crossref]

2009 (1)

M. L. Sham, J. Li, P. C. Ma, and J. K. Kim, “Cleaning and functionalization of polymer surfaces and nanoscale carbon fillers by UV/ozone treatment: a review,” J. Compos. Mater. 43, 1537–1564 (2009).
[Crossref]

2008 (5)

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[Crossref]

C. Caucheteur, M. Debliquy, D. Lahem, and P. Mégret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16, 16854–16859 (2008).
[Crossref]

Q. Wang, G. Farrell, and W. Yan, “Investigation on single-mode–multimode–single-mode fiber structure,” J. Lightwave Technol. 26, 512–519 (2008).
[Crossref]

Y.-C. Lu, L. Yang, W.-P. Huang, and S.-S. Jian, “Improved full-vector finite-difference complex mode solver for optical waveguides of circular symmetry,” J. Lightwave Technol. 26(13), 1868–1876 (2008).
[Crossref]

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J 8, 1292–1298 (2008).
[Crossref]

2007 (2)

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” Photon. Technol. Lett. 19 , 966–968 (2007).
[Crossref]

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
[Crossref]

2006 (2)

K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Low thermal sensitivity grating devices based on ex-45° tilting structure capable of forward-propagating cladding modes coupling,” J. Lightwave Technol. 24, 5087–5094 (2006).
[Crossref]

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129 (2006).
[Crossref]

2005 (1)

S. D. Dyer, P. A. Williams, R. J. Espejo, J. D. Kofler, and S. M. Etzel, “Fundamental limits in fiber Bragg grating peak wavelength measurements (invited paper),” Proc. SPIE 5855, 88–93 (2005).
[Crossref]

2004 (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40 , 1170–1172 (2004).
[Crossref]

2003 (4)

A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Opt. Lett. 28, 2171–2173 (2003).
[Crossref]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. G. H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[Crossref]

E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Light.Technol. 21 , 218–227 (2003).
[Crossref]

A. Kumar, R. K. Varshney, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
[Crossref]

2002 (2)

2000 (1)

1999 (4)

V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4, 457–466 (1999).
[Crossref]

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B 60, 27–34 (1999).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11, 352–354 (1999).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B 54, 3–15 (1999).
[Crossref]

1998 (2)

J. Albert, “Permanent photoinduced refractive-index changes for Bragg gratings in silicate glass waveguides and fiber,” MRS Bull. 23 , 36–41 (1998).
[Crossref]

G. Ramsay, “DNA chips: State-of-the art,” Nat. Biotechnol. 16, 40–44 (1998).
[Crossref]

1997 (4)

C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, “Characteristics of hydrogenated fiber Bragg gratings,” Appl. Phys. A 64, 191–197 (1997).
[Crossref]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15 , 1442–1463 (1997).
[Crossref]

F. L. Teixeira and W. C. Chew, “PML-FDTD in cylindrical and spherical grids,” IEEE Microw. and Guided Waves Lett. 7 , 285–287 (1997).
[Crossref]

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

1996 (2)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bahtia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[Crossref]

1994 (3)

1993 (3)

K. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

J. L. Archambault, L. Reekie, and P. S. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[Crossref]

1992 (1)

E. Anemogiannis and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344–1351 (1992).
[Crossref]

1990 (1)

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270–1272 (1990).
[Crossref]

1989 (2)

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 15, 823–825 (1989).
[Crossref]

P. R. Horche, M. López-Amo, M. A. Muriel, and J. A. Martin-Pereda, “Spectral behavior of a low-cost all-fiber component based on untapered multifiber unions,” IEEE Photonics Technol. Lett. 1, 184–187 (1989).
[Crossref]

1987 (1)

1984 (1)

1978 (2)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

J. Bucaro and E. Carome, “Single fiber interferometric acoustic sensor,” Appl. Opt. 17, 330–331 (1978).
[Crossref]

Abdalla, A. M.

A. M. Abdalla, S. Hossain, O. B. Nisfindy, A. T. Azad, M. Dawood, and A. K. Azad, “Hydrogen production, storage, transportation and key challenges with applications: a review,” Energy Convers. Manage. 165, 602–627 (2018).
[Crossref]

Abdullah, A.

A. Azmi, A. Abdullah, M. M. Noor, M. Ibrahim, R. R. Ibrahim, T. Tan, and J. Zhang, “Dynamic bending and rotation sensing based on high coherence interferometry in multicore fiber,” Opt. Laser Technol. 135, 106716 (2021).
[Crossref]

Abe, T.

T. Yamanaka, H. Nakagawa, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “In situ Raman spectroscopic studies on concentration of electrolyte salt in lithium ion batteries by using ultrafine multifiber probes,” ChemSusChem 10 , 855–861 (2017).
[Crossref]

Adam, J. M.

I. Floris, J. M. Adam, P. A. Calderón, and S. Sales, “Fiber optic shape sensors: a comprehensive review,” Opt. Lasers Eng. 139, 106508 (2021).
[Crossref]

Ahamad, N.

Ahmad, H.

Alam, M. Z.

Alamgir, M.

A. Raghavan, P. Kiesel, L. W. Sommer, J. Schwartz, A. Lochbaum, A. Hegyi, A. Schuh, K. Arakaki, B. Saha, A. Ganguli, K. H. Kim, C. Kim, H. J. Hah, S. kim, G.-O. Hwang, G.-C. Chung, B. Choi, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance,” J. Power Sources 341, 466–473 (2017).
[Crossref]

A. Ganguli, B. Saha, A. Raghavan, P. Kiesel, K. Arakaki, A. Schuh, J. Schwartz, A. Hegyi, L. W. Sommer, A. Lochbaum, S. Sahu, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: internal cell signals and utility for state estimation,” J. Power Sources 341, 474–482 (2017).
[Crossref]

Albert, J.

S. A. Alqarni, W. G. Willmore, J. Albert, and C. W. Smelser, “Self-monitored and optically powered fiber-optic device for localized hyperthermia and controlled cell death in vitro,” Appl. Opt. 60, 2400–2411 (2021).
[Crossref]

F. Liu, X. Zhang, K. Li, T. Guo, A. Ianoul, and J. Albert, “Discrimination of bulk and surface refractive index change in plasmonic sensors with narrow bandwidth resonance combs,” ACS Sens. 6, 3013–3023 (2021).
[Crossref]

D. Feng, J. Albert, Y. Hou, B. Jiang, Y. Jiang, Y. Ma, and J. Zhao, “Co-located angularly offset fiber Bragg grating pair for temperature-compensated unambiguous 3D shape sensing,” Appl. Opt. 60 , 4185–4189 (2021).
[Crossref]

F. Ouellette, J. Li, Z. Ou, and J. Albert, “High-resolution interrogation of tilted fiber Bragg gratings using an extended range dual wavelength differential detection,” Opt. Express 28, 14662–14676 (2020).
[Crossref]

F. Liu, X. Zhang, T. Guo, and J. Albert, “Optical detection of the percolation threshold of nanoscale silver coatings with optical fiber gratings,” APL Photonics 5, 076101 (2020).
[Crossref]

M. Loyez, E. M. Hassan, M. Lobry, F. Liu, C. Caucheteur, R. Wattiez, M. C. DeRosa, W. G. Willmore, and J. Albert, “Rapid detection of circulating breast cancer cells using a multiresonant optical fiber aptasensor with plasmonic amplification,” ACS Sens. 5, 454–463 (2020).
[Crossref]

C. Shen, D. Liu, X. Lian, T. Lang, C. Zhao, Y. Semenova, and J. Albert, “Microfluidic flow direction and rate vector sensor based on a partially gold-coated TFBG,” Opt. Lett. 45, 2776–2779 (2020).
[Crossref]

J. Koppert, H. Jean-Ruel, D. O’Neill, C. Harder, W. Willmore, A. Ianoul, and J. Albert, “Self-heating tilted fiber Bragg grating device for melt curve analysis of solid-phase DNA hybridization and thermal cycling,” Anal. Bioanal. Chem. 411, 6813–6823 (2019).
[Crossref]

F. Liu and J. Albert, “40 GHz-rate all-optical cross-modulation of core-guided near infrared light in single mode fiber by surface plasmons on gold-coated tilted fiber Bragg gratings,” APL Photonics 4, 126104 (2019).
[Crossref]

D. Feng, J. Albert, Y. Jiang, C. Liu, B. Jiang, H. Wang, and J. Zhao, “Symmetry selective cladding modes coupling in ultrafast-written fiber Bragg gratings in two-mode fiber,” Opt. Express 27, 18410–18420 (2019).
[Crossref]

T. Gang, F. Liu, M. Hu, and J. Albert, “Integrated differential area method for variable sensitivity interrogation of tilted fiber Bragg grating sensors,” J. Lightwave Technol. 37, 4531–4536 (2019).
[Crossref]

C. Shen, X. Lian, V. Kavungal, C. Zhong, D. Liu, Y. Semenova, G. Farrell, J. Albert, and J. F. Donegan, “Optical spectral sweep comb liquid flow rate sensor,” Opt. Lett. 43, 751–754 (2018).
[Crossref]

X. Zhang, S. Cai, F. Liu, H. Chen, P. Yan, Y. Yuan, T. Guo, and J. Albert, “In situ determination of the complex permittivity of ultrathin H2-infused palladium coatings for plasmonic fiber optic sensors in the near infrared,” J. Mater. Chem. C 6, 5161–5170 (2018).
[Crossref]

C. Shen, C. Zhong, D. Liu, X. Xian, J. Zheng, J. Wang, Y. Semenova, G. Farrell, J. Albert, and J. F. Donegan, “Measurements of milli-Newton surface tension forces with tilted fiber Bragg gratings,” Opt. Lett. 43, 2–5 (2018).
[Crossref]

J. Lao, P. Sun, F. Liu, X. Zhang, C. Zhao, W. Mai, T. Guo, G. Xiao, and J. Albert, “In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage,” Light: Sci. Appl. 7, 1–12 (2018).
[Crossref]

M. Loyez, J. Albert, C. Caucheteur, and R. Wattiez, “Cytokeratins biosensing using tilted fiber gratings,” Biosensors 8, 1–8 (2018).
[Crossref]

W. Zhou, Y. Zhou, and J. Albert, “A true fiber optic refractometer,” Laser Photonics Rev. 11, 1600157 (2017).
[Crossref]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref]

D. Feng, X. Qiao, and J. Albert, “Off-axis ultraviolet-written fiber Bragg gratings for directional bending measurements,” Opt. Lett. 41, 1201–1204 (2016).
[Crossref]

Y. Yuan, T. Guo, X. Qiu, J. Tang, Y. Huang, L. Zhuang, S. Zhou, Z. Li, B. Guan, X. Zhang, and J. Albert, “Electrochemical surface plasmon resonance fiber-optic sensor: in-situ detection of electroactive biofilms,” Anal. Chem. 88, 7609–7616 (2016).
[Crossref]

Z. Zhang, T. Guo, X. Zhang, J. Xu, W. Xie, M. Nie, Q. Wu, B. O. Guan, and J. Albert, “Plasmonic fiber-optic vector magnetometer,” Appl. Phys. Lett. 108 , 101105 (2016).
[Crossref]

D. J. Mandia, W. Zhou, J. Albert, and S. T. Barry, “CVD on optical fibers: tilted fiber Bragg gratings as real-time sensing platforms,” Chem. Vap. Depos. 21, 4–20 (2015).
[Crossref]

D. J. Mandia, W. Zhou, M. J. Ward, H. Joress, J. J. Sims, J. B. Giorgi, J. Albert, and S. T. Barry, “The effect of ALD-grown Al2O3 on the refractive index sensitivity of CVD gold-coated optical fiber sensors,” Nanotechnology 26, 434002 (2015).
[Crossref]

D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact optical fiber 3D shape sensor based on a pair of orthogonal tilted fiber Bragg gratings,” Sci. Rep. 5, 17415 (2015).
[Crossref]

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating,” Opt. Lett. 40, 1713 (2015).
[Crossref]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

A. V. Newkirk, J. E. Antonio-Lopez, A. Velazquez-Benitez, J. Albert, R. Amezcua-Correa, and A. Schulzgen, “Bending sensor combining multicore fiber with a mode-selective photonic lantern,” Opt. Lett. 40, 5188–5191 (2015).
[Crossref]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C 118, 670–678 (2014).
[Crossref]

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express 22, 31665–31676 (2014).
[Crossref]

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Anomalous effective strain-optic constants of nonparaxial optical fiber mode,” Opt. Lett. 39, 578 (2014).
[Crossref]

S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52, 337–344 (2014).
[Crossref]

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanowire coatings on optical fibers,” J. Phys. Chem. C 118, 11035–11042 (2014).
[Crossref]

C. Shen, W. Zhou, and J. Albert, “Polarization-resolved evanescent wave scattering from gold-coated tilted fiber gratings,” Opt. Express 22, 5277 (2014).
[Crossref]

C. Shen, L. Xiong, A. Bialiayeu, Y. Zhang, and J. Albert, “Polarization-resolved near- and far-field radiation from near-infrared tilted fiber Bragg gratings,” J. Lightwave Technol. 32, 2157–2162 (2014).
[Crossref]

S. Lépinay, A. Ianoul, and J. Albert, “Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules,” Talanta 128, 401–407 (2014).
[Crossref]

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56, 359–367 (2014).
[Crossref]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, A. Bialiayeu, Y. Zhang, P. G. Gordon, S. T. Barry, and J. Albert, “Polarization-dependent properties of the cladding modes of single mode fiber covered with gold nanoparticles,” Opt. Express 21, 245–255 (2013).
[Crossref]

D. J. Mandia, M. B. E. Griffiths, W. Zhou, P. G. Gordon, J. Albert, and S. T. Barry, “In situ deposition monitoring by a tilted fiber Bragg grating optical probe: probing nucleation in chemical vapour deposition of gold,” Phys. Procedia 46, 12–20 (2013).
[Crossref]

M. Z. Alam and J. Albert, “Selective excitation of radially and azimuthally polarized optical fiber cladding modes,” J. Lightwave Technol. 31, 3167–3175 (2013).
[Crossref]

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7, 83–108 (2013).
[Crossref]

A. Bialiayeu, A. Bottomley, D. Prezgot, A. Ianoul, and J. Albert, “Plasmon-enhanced refractometry using silver nanowire coating on tilted fiber Bragg gratings,” Nanotechnology 23, 444012 (2012).
[Crossref]

L. Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers,” Opt. Mater. Express 1, 128–137 (2011).
[Crossref]

A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, “Self-optimized metal coating for fiber plasmonics by electroless deposition,” Opt. Express 19, 18742–18753 (2011).
[Crossref]

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83, 7027–7034 (2011).
[Crossref]

L. Shao, L. Xiong, C. Chen, A. Laronche, and J. Albert, “Directional bend sensor based on re-grown tilted fiber Bragg grating,” J. Lightwave Technol. 28 , 2681–2687 (2010).
[Crossref]

J. Albert, “Permanent photoinduced refractive-index changes for Bragg gratings in silicate glass waveguides and fiber,” MRS Bull. 23 , 36–41 (1998).
[Crossref]

K. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Alberto, N.

S. Novais, M. Nascimento, L. Grande, M. F. Domingues, P. Antunes, N. Alberto, C. Leitao, R. Oliveira, S. Koch, G. T. Kim, S. Passerini, and J. Pinto, “Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors,” Sensors 16 , 1394 (2016).
[Crossref]

Alijanianzadeh, M.

M. Arjmand, H. Saghafifar, M. Alijanianzadeh, and M. Soltanolkotabi, “A sensitive tapered-fiber optic biosensor for the label-free detection of organophosphate pesticides,” Sens. Actuators B 249, 523–532 (2017).
[Crossref]

Alla, D.

Almeida, J. M.

S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photon. Technol. Lett. 25 , 401–403 (2013).
[Crossref]

Alonso-Murias, M. C.

Alouini, M.-S.

I. Ashry, Y. Mao, A. Trichili, B. Wang, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “A review of using few-mode fibers for optical sensing,” IEEE Access 8, 179592–179605 (2020).
[Crossref]

Alqarni, S. A.

Amezcua-Correa, A.

Amezcua-Correa, R.

M. C. Alonso-Murias, D. Monzon-Hernandez, O. Rodriguez-Quiroz, J. E. Antonio-Lopez, A. Schulzgen, R. Amezcua-Correa, and J. Villatoro, “Long-range multicore optical fiber displacement sensor,” Opt. Lett. 46, 2224–2227 (2021).
[Crossref]

J. Amorebieta, A. Ortega-Gomez, G. Durana, R. Fernandez, E. Antonio-Lopez, A. Schulzgen, J. Zubia, R. Amezcua-Correa, and J. Villatoro, “Compact omnidirectional multicore fiber-based vector bending sensor,” Sci. Rep. 11, 5989 (2021).
[Crossref]

J. Amorebieta, A. Ortega-Gomez, G. Durana, R. Fernández, E. Antonio-Lopez, A. Schülzgen, J. Zubia, R. Amezcua-Correa, and J. Villatoro, “Highly sensitive multicore fiber accelerometer for low frequency vibration sensing,” Sci. Rep. 10, 1–11 (2020).
[Crossref]

J. Villatoro, J. Amorebieta, A. Ortega-Gomez, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Composed multicore fiber structure for direction-sensitive curvature monitoring,” APL Photonics 5, 070801 (2020).
[Crossref]

J. Amorebieta, G. Durana, A. Ortega-Gomez, R. Fernández, J. Velasco, I. S. de Ocáriz, J. Zubia, J. E. Antonio-López, A. Schülzgen, and R. Amezcua-Correa, “Packaged multi-core fiber interferometer for high-temperature sensing,” J. Lightwave Technol. 37, 2328–2334 (2019).
[Crossref]

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7, 4451 (2017).
[Crossref]

J. Villatoro, E. Antonio-Lopez, A. Schulzgen, and R. Amezcua-Correa, “Miniature multicore optical fiber vibration sensor,” Opt. Lett. 42, 2022–2025 (2017).
[Crossref]

J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41, 832–835 (2016).
[Crossref]

A. Van Newkirk, J. E. Antonio-Lopez, G. Salceda-Delgado, M. U. Piracha, R. Amezcua-Correa, and A. Schulzgen, “Multicore fiber sensors for simultaneous measurement of force and temperature,” IEEE Photonics Technol. Lett. 27, 1523–1526 (2015).
[Crossref]

A. V. Newkirk, J. E. Antonio-Lopez, A. Velazquez-Benitez, J. Albert, R. Amezcua-Correa, and A. Schulzgen, “Bending sensor combining multicore fiber with a mode-selective photonic lantern,” Opt. Lett. 40, 5188–5191 (2015).
[Crossref]

J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000 °C,” Opt. Lett. 39, 4309–4312 (2014).
[Crossref]

Amorebieta, J.

J. Amorebieta, A. Ortega-Gomez, G. Durana, R. Fernandez, E. Antonio-Lopez, A. Schulzgen, J. Zubia, R. Amezcua-Correa, and J. Villatoro, “Compact omnidirectional multicore fiber-based vector bending sensor,” Sci. Rep. 11, 5989 (2021).
[Crossref]

J. Amorebieta, A. Ortega-Gomez, G. Durana, R. Fernández, E. Antonio-Lopez, A. Schülzgen, J. Zubia, R. Amezcua-Correa, and J. Villatoro, “Highly sensitive multicore fiber accelerometer for low frequency vibration sensing,” Sci. Rep. 10, 1–11 (2020).
[Crossref]

J. Villatoro, J. Amorebieta, A. Ortega-Gomez, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Composed multicore fiber structure for direction-sensitive curvature monitoring,” APL Photonics 5, 070801 (2020).
[Crossref]

J. Amorebieta, G. Durana, A. Ortega-Gomez, R. Fernández, J. Velasco, I. S. de Ocáriz, J. Zubia, J. E. Antonio-López, A. Schülzgen, and R. Amezcua-Correa, “Packaged multi-core fiber interferometer for high-temperature sensing,” J. Lightwave Technol. 37, 2328–2334 (2019).
[Crossref]

An, G.

Y. N. Zhang, H. Peng, X. Qian, Y. Zhang, G. An, and Y. Zhao, “Recent advancements in optical fiber hydrogen sensors,” Sens. Actuators, B 244, 393–416 (2017).
[Crossref]

Andres, M. V.

Anemogiannis, E.

E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Light.Technol. 21 , 218–227 (2003).
[Crossref]

E. Anemogiannis and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344–1351 (1992).
[Crossref]

Annuar Zaini, M. K.

Antohe, I.

I. Antohe, K. Schouteden, P. Goos, F. Delport, D. Spasic, and J. Lammertyn, “Thermal annealing of gold coated fiber optic surfaces for improved plasmonic biosensing,” Sens. Actu. B 229, 678–685 (2016).
[Crossref]

Antonio-Lopez, E.

J. Amorebieta, A. Ortega-Gomez, G. Durana, R. Fernandez, E. Antonio-Lopez, A. Schulzgen, J. Zubia, R. Amezcua-Correa, and J. Villatoro, “Compact omnidirectional multicore fiber-based vector bending sensor,” Sci. Rep. 11, 5989 (2021).
[Crossref]

J. Amorebieta, A. Ortega-Gomez, G. Durana, R. Fernández, E. Antonio-Lopez, A. Schülzgen, J. Zubia, R. Amezcua-Correa, and J. Villatoro, “Highly sensitive multicore fiber accelerometer for low frequency vibration sensing,” Sci. Rep. 10, 1–11 (2020).
[Crossref]

J. Villatoro, J. Amorebieta, A. Ortega-Gomez, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Composed multicore fiber structure for direction-sensitive curvature monitoring,” APL Photonics 5, 070801 (2020).
[Crossref]

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7, 4451 (2017).
[Crossref]

J. Villatoro, E. Antonio-Lopez, A. Schulzgen, and R. Amezcua-Correa, “Miniature multicore optical fiber vibration sensor,” Opt. Lett. 42, 2022–2025 (2017).
[Crossref]

J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41, 832–835 (2016).
[Crossref]

Antonio-Lopez, J.

J. Antonio-Lopez, D. May-Arrioja, and P. LiKamWa, “Optofluidic tuning of multimode interference fiber filters,” in Enabling Photonics Technologies for Defense, Security, and Aerospace Applications V (SPIE , 2009 ), p. 73390D .

Antonio-Lopez, J. E.

Antonio-López, J. E.

Antunes, P.

S. Novais, M. Nascimento, L. Grande, M. F. Domingues, P. Antunes, N. Alberto, C. Leitao, R. Oliveira, S. Koch, G. T. Kim, S. Passerini, and J. Pinto, “Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors,” Sensors 16 , 1394 (2016).
[Crossref]

Arakaki, K.

A. Raghavan, P. Kiesel, L. W. Sommer, J. Schwartz, A. Lochbaum, A. Hegyi, A. Schuh, K. Arakaki, B. Saha, A. Ganguli, K. H. Kim, C. Kim, H. J. Hah, S. kim, G.-O. Hwang, G.-C. Chung, B. Choi, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance,” J. Power Sources 341, 466–473 (2017).
[Crossref]

A. Ganguli, B. Saha, A. Raghavan, P. Kiesel, K. Arakaki, A. Schuh, J. Schwartz, A. Hegyi, L. W. Sommer, A. Lochbaum, S. Sahu, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: internal cell signals and utility for state estimation,” J. Power Sources 341, 474–482 (2017).
[Crossref]

Arasu, P. T.

N. A. M. Zainuddin, M. M. Ariannejad, P. T. Arasu, S. W. Harun, and R. Zakaria, “Investigation of cladding thicknesses on silver SPR based side-polished optical fiber refractive-index sensor,” Results Phys. 13, 102255 (2019).
[Crossref]

Archambault, J. L.

J. L. Archambault, L. Reekie, and P. S. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[Crossref]

Ariannejad, M. M.

N. A. M. Zainuddin, M. M. Ariannejad, P. T. Arasu, S. W. Harun, and R. Zakaria, “Investigation of cladding thicknesses on silver SPR based side-polished optical fiber refractive-index sensor,” Results Phys. 13, 102255 (2019).
[Crossref]

Arjmand, M.

M. Arjmand, H. Saghafifar, M. Alijanianzadeh, and M. Soltanolkotabi, “A sensitive tapered-fiber optic biosensor for the label-free detection of organophosphate pesticides,” Sens. Actuators B 249, 523–532 (2017).
[Crossref]

Arregui, F. J.

I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]

I. Del Villar, C. R. Zamarreno, M. Hernaez, F. J. Arregui, and I. R. Matias, “Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications,” J. Lightwave Technol. 28, 111–117 (2010).
[Crossref]

D. Villar, C. R. Zamarreño, P. Sanchez, M. Hernaez, C. F. Valdivielso, F. J. Arregui, and I. R. Matias, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12, 095503 (2010).
[Crossref]

Arrizabalaga, O.

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7, 4451 (2017).
[Crossref]

Arsenin, A. V.

Y. V. Stebunov, D. I. Yakubovsky, D. Y. Fedyanin, A. V. Arsenin, and V. S. Volkov, “Superior sensitivity of copper-based plasmonic biosensors,” Langmuir 34, 4681–4687 (2018).
[Crossref]

Asal, M.

M. Asal, Ö Özen, M. Şahinler, and İ Polatoğlu, “Recent developments in enzyme, DNA and immuno-based biosensors,” Sensors 18 , 1924 (2018).
[Crossref]

Ascorbe, J.

I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]

Ashry, I.

I. Ashry, Y. Mao, A. Trichili, B. Wang, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “A review of using few-mode fibers for optical sensing,” IEEE Access 8, 179592–179605 (2020).
[Crossref]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15 , 1442–1463 (1997).
[Crossref]

C. G. Askins, M. A. Putnam, G. M. Williams, and E. J. Friebele, “Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower,” Opt. Lett. 19, 147–149 (1994).
[Crossref]

Atkins, R. M.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

Ávila, B. J.

Ayupova, T.

M. Sypabekova, S. Korganbayev, Á González-Vila, C. Caucheteur, M. Shaimerdenova, T. Ayupova, A. Bekmurzayeva, L. Vangelista, and D. Tosi, “Functionalized etched tilted fiber Bragg grating aptasensor for label-free protein detection,” Biosens. Bioelectron. 146, 111765 (2019).
[Crossref]

A. Bekmurzayeva, K. Dukenbayev, M. Shaimerdenova, I. Bekniyazov, T. Ayupova, M. Sypabekova, C. Molardi, and D. Tosi, “Etched fiber Bragg grating biosensor functionalized with aptamers for detection of thrombin,” Sensors 18 , 4298 (2018).
[Crossref]

Azad, A. K.

A. M. Abdalla, S. Hossain, O. B. Nisfindy, A. T. Azad, M. Dawood, and A. K. Azad, “Hydrogen production, storage, transportation and key challenges with applications: a review,” Energy Convers. Manage. 165, 602–627 (2018).
[Crossref]

Azad, A. T.

A. M. Abdalla, S. Hossain, O. B. Nisfindy, A. T. Azad, M. Dawood, and A. K. Azad, “Hydrogen production, storage, transportation and key challenges with applications: a review,” Energy Convers. Manage. 165, 602–627 (2018).
[Crossref]

Azmi, A.

A. Azmi, A. Abdullah, M. M. Noor, M. Ibrahim, R. R. Ibrahim, T. Tan, and J. Zhang, “Dynamic bending and rotation sensing based on high coherence interferometry in multicore fiber,” Opt. Laser Technol. 135, 106716 (2021).
[Crossref]

Badar, M.

P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: review and perspective,” Appl. Phys. Rev. 6, 041302 (2019).
[Crossref]

Bahtia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bahtia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Bai, X.

F. Shi, X. Bai, F. Wang, F. Pang, S. Pu, and X. Zeng, “All-fiber magnetic field sensor based on hollow optical fiber and magnetic fluid,” IEEE Sens. J. 17 , 619–622 (2016).
[Crossref]

Bai, Y.

D. Yang, L. Du, Z. Xu, Y. Jiang, J. Xu, M. Wang, Y. Bai, and H. Wang, “Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid,” Appl. Phys. Lett. 104 , 061903 (2014).
[Crossref]

Baldini, F.

F. Esposito, L. Sansone, A. Srivastava, F. Baldini, S. Campopiano, F. Chiavaioli, M. Giordano, A. Giannetti, and A. Iadicicco, “Long period grating in double cladding fiber coated with graphene oxide as high-performance optical platform for biosensing,” Biosens. Bioelectron. 172, 112747 (2021).
[Crossref]

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors 7, 23 (2017).
[Crossref]

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87, 12024–12031 (2015).
[Crossref]

Baliyan, A.

A. Baliyan, S. Sital, U. Tiwari, R. Gupta, and E. K. Sharma, “Long period fiber grating based sensor for the detection of triacylglycerides,” Biosens. Bioelectron. 79, 693–700 (2016).
[Crossref]

Ballato, J.

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkins, P. Dragic, and J. Ballato, “Overview of high temperature fibre Bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibres,” J. Phys.: Photonics 1, 042001 (2019).
[Crossref]

Banach, U.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - a review,” Sens. Act. B 157 , 329–352 (2011).
[Crossref]

Bandyopadhyay, S.

S. Bandyopadhyay, L. shao, M. Smietana, C. Wang, J. Hu, G. Wang, W. He, G. Gu, and Y. Yang, “Employing higher order cladding modes of fiber Bragg grating for analysis of refractive index change in volume and at the surface,” IEEE Photonics J. 12, 7100313 (2020).
[Crossref]

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87, 12024–12031 (2015).
[Crossref]

Bang, O.

Bao, X.

Bao, Y.

Barabadi, H.

A. Vernet-Crua, D. Medina-Cruz, E. Mostafavi, A. Benko, J. L. Cholula-Diaz, M. Suravana, H. Vahidi, H. Barabadi, and T. J. Webster, “Nanobiosensors for theranostic applications,” in Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications (Elsevier, 2021), Chap. 23, pp. 511–543 .

Bariain, C.

I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]

Barillas, L.

E. Makhneva, L. Barillas, Z. Farka, M. Pastucha, P. Skládal, K.-D. Weltmann, and K. Fricke, “Functional plasma polymerized surfaces for biosensing,” ACS Appl. Mater. Interfaces 12, 17100–17112 (2020).
[Crossref]

Barnier, F.

K. Oi, F. Barnier, and M. Obara, “Fabrication of fiber Bragg grating by femtosecond laser interferometry, ” in 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE/OSA, 2001), pp. 776–777 .

Barrera, D.

F. Khan, A. Denasi, D. Barrera, J. Madrigal, S. Sales, and S. Misra, “Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments,” IEEE Sens. J. 19, 5878–5884 (2019).
[Crossref]

J. Madrigal, D. Barrera, and S. Sales, “Refractive index and temperature sensing using inter-core crosstalk in multicore fibers,” J. Lightwave Technol. 37, 4703–4709 (2019).
[Crossref]

D. Barrera, J. Madrigal, and S. Sales, “Long period gratings in multicore optical fibers for directional curvature sensor implementation,” J. Lightwave Technol. 36, 1063–1068 (2018).
[Crossref]

D. Barrera, J. Madrigal, and S. Sales, “Tilted fiber Bragg gratings in multicore optical fibers for optical sensing,” Opt. Lett. 42, 1460–1463 (2017).
[Crossref]

D. Zheng, J. Madrigal, D. Barrera, S. Sales, and J. Capmany, “Microwave photonic filtering for interrogating FBG-based multicore fiber curvature sensor,” IEEE Photonics Technol. Lett. 29, 1707–1710 (2017).
[Crossref]

Barrias, S.

S. Barrias, J. R. Fernandes, J. E. Eiras-Dias, J. Brazão, and P. Martins-Lopes, “Label free DNA-based optical biosensor as a potential system for wine authenticity,” Food Chem. 270, 299–304 (2019).
[Crossref]

Barry, S. T.

D. J. Mandia, W. Zhou, M. J. Ward, H. Joress, J. J. Sims, J. B. Giorgi, J. Albert, and S. T. Barry, “The effect of ALD-grown Al2O3 on the refractive index sensitivity of CVD gold-coated optical fiber sensors,” Nanotechnology 26, 434002 (2015).
[Crossref]

D. J. Mandia, W. Zhou, J. Albert, and S. T. Barry, “CVD on optical fibers: tilted fiber Bragg gratings as real-time sensing platforms,” Chem. Vap. Depos. 21, 4–20 (2015).
[Crossref]

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating,” Opt. Lett. 40, 1713 (2015).
[Crossref]

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express 22, 31665–31676 (2014).
[Crossref]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C 118, 670–678 (2014).
[Crossref]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, A. Bialiayeu, Y. Zhang, P. G. Gordon, S. T. Barry, and J. Albert, “Polarization-dependent properties of the cladding modes of single mode fiber covered with gold nanoparticles,” Opt. Express 21, 245–255 (2013).
[Crossref]

D. J. Mandia, M. B. E. Griffiths, W. Zhou, P. G. Gordon, J. Albert, and S. T. Barry, “In situ deposition monitoring by a tilted fiber Bragg grating optical probe: probing nucleation in chemical vapour deposition of gold,” Phys. Procedia 46, 12–20 (2013).
[Crossref]

L. Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers,” Opt. Mater. Express 1, 128–137 (2011).
[Crossref]

Bartelt, H.

M. Becker, A. Lorenz, T. Elsmann, I. Latka, A. Schwuchow, S. Dochow, R. Spittel, J. Kobelke, J. Bierlich, K. Schuster, M. Rothhardt, and H. Bartelt, “Single-mode multicore fibers with integrated Bragg filters,” J. Lightwave Technol. 34, 4572–4578 (2016).
[Crossref]

S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photon. Technol. Lett. 25 , 401–403 (2013).
[Crossref]

Barton, J. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J 8, 1292–1298 (2008).
[Crossref]

Basumallick, N.

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87, 12024–12031 (2015).
[Crossref]

Beard, P. C.

Becker, M.

M. Becker, A. Lorenz, T. Elsmann, I. Latka, A. Schwuchow, S. Dochow, R. Spittel, J. Kobelke, J. Bierlich, K. Schuster, M. Rothhardt, and H. Bartelt, “Single-mode multicore fibers with integrated Bragg filters,” J. Lightwave Technol. 34, 4572–4578 (2016).
[Crossref]

S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photon. Technol. Lett. 25 , 401–403 (2013).
[Crossref]

Becker, R. G.

Beekwilder, J.

A. K. Trilling, J. Beekwilder, and H. Zuilhof, “Antibody orientation on biosensor surfaces: a minireview,” Analyst 138, 1619–1627 (2013).
[Crossref]

Bekmurzayeva, A.

M. Sypabekova, S. Korganbayev, Á González-Vila, C. Caucheteur, M. Shaimerdenova, T. Ayupova, A. Bekmurzayeva, L. Vangelista, and D. Tosi, “Functionalized etched tilted fiber Bragg grating aptasensor for label-free protein detection,” Biosens. Bioelectron. 146, 111765 (2019).
[Crossref]

A. Bekmurzayeva, K. Dukenbayev, M. Shaimerdenova, I. Bekniyazov, T. Ayupova, M. Sypabekova, C. Molardi, and D. Tosi, “Etched fiber Bragg grating biosensor functionalized with aptamers for detection of thrombin,” Sensors 18 , 4298 (2018).
[Crossref]

M. Shaimerdenova, A. Bekmurzayeva, M. Sypabekova, and D. Tosi, “Interrogation of coarsely sampled tilted fiber Bragg grating (TFBG) sensors with KLT,” Opt. Express 25, 33487–33496 (2017).
[Crossref]

Bekniyazov, I.

A. Bekmurzayeva, K. Dukenbayev, M. Shaimerdenova, I. Bekniyazov, T. Ayupova, M. Sypabekova, C. Molardi, and D. Tosi, “Etched fiber Bragg grating biosensor functionalized with aptamers for detection of thrombin,” Sensors 18 , 4298 (2018).
[Crossref]

Beltrán-Pérez, G.

R. Delgado-Macuil, K. González-León, and G. Beltrán-Pérez, “Neuropsin (Opn5) detection in the brain tissue of a murine model using long period fiber grating (LPFG),” Opt. Laser Technol. 139, 1–9 (2021).
[Crossref]

Benko, A.

A. Vernet-Crua, D. Medina-Cruz, E. Mostafavi, A. Benko, J. L. Cholula-Diaz, M. Suravana, H. Vahidi, H. Barabadi, and T. J. Webster, “Nanobiosensors for theranostic applications,” in Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications (Elsevier, 2021), Chap. 23, pp. 511–543 .

Bennion, I.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J 8, 1292–1298 (2008).
[Crossref]

K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Low thermal sensitivity grating devices based on ex-45° tilting structure capable of forward-propagating cladding modes coupling,” J. Lightwave Technol. 24, 5087–5094 (2006).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40 , 1170–1172 (2004).
[Crossref]

X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20, 255–266 (2002).
[Crossref]

Bera, S.

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87, 12024–12031 (2015).
[Crossref]

Berini, P.

Bestariyan, T.

A. M. Hatta, K. Indriawati, T. Bestariyan, T. Humada, and Sekartedjo, “SMS fiber structure for temperature measurement using an OTDR,” Photonic Sens. 3, 262–266 (2013).
[Crossref]

Bette, S.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” Photon. Technol. Lett. 19 , 966–968 (2007).
[Crossref]

Betzig, E.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Bhatia, V.

Bialiayeu, A.

Bian, Q.

K. Wang, X. Dong, M. H. Köhler, P. Kienle, Q. Bian, M. Jakobi, and A. W. Koch, “Advances in optical fiber sensors based on multimode interference (MMI): a review,” IEEE Sens. J. 21, 132–142 (2020).
[Crossref]

Bienstman, P.

Bierlich, J.

Bilek, M. M.

M. M. Bilek and D. R. McKenzie, “Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants,” Biophys. Rev. 2, 55–65 (2010).
[Crossref]

Bilodeau, F.

K. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270–1272 (1990).
[Crossref]

Birks, T. A.

Biswas, P.

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87, 12024–12031 (2015).
[Crossref]

Black, G.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - a review,” Sens. Act. B 157 , 329–352 (2011).
[Crossref]

Blair, D. A. D.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83, 7027–7034 (2011).
[Crossref]

Blake, J. N.

Blanquer, L. A.

J. Huang, L. A. Blanquer, J. Bonefacino, E. R. Logan, D. A. D. Corte, C. Delacourt, B. M. Gallant, S. T. Boles, J. R. Dhan, H.-Y. Tam, and J.-M. Tarascon, “Operando decoding of chemical and thermal events in commercial Na (Li)-ion cells via optical sensors,” Nat. Energy 5 , 674–683 (2020).
[Crossref]

Bock, W. J.

S. M. Tripathi, K. Dandapat, W. J. Bock, P. Mikulic, J. Perreault, and B. Sellamuthu, “Gold coated dual-resonance long-period fiber gratings (DR-LPFG) based aptasensor for cyanobacterial toxin detection,” Sens. Bio-Sensing Res. 25, 100289 (2019).
[Crossref]

A. Celebanska, Y. Chiniforooshan, M. Janik, P. Mikulic, B. Sellamuthu, R. Walsh, J. Perreault, and W. J. Bock, “Label-free cocaine aptasensor based on a long-period fiber grating,” Opt. Lett. 44, 2482 (2019).
[Crossref]

M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Act. B 250, 32–38 (2017).
[Crossref]

A. Czapla, W. J. Bock, T. R. Wolinski, P. Mikulic, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Improving the electric field sensing capabilities of the long-period fiber grating coated with a liquid crystal layer,” Opt. Express 24, 5662–5673 (2016).
[Crossref]

M. Śmietana, T. Drażewski, P. Firek, P. Mikulic, and W. J. Bock, “Comparison of Al2O3 nano-overlays deposited with magnetron sputtering and atomic layer deposition on optical fibers for sensing purpose,” in Micro/Nano Materials, Devices, and Systems (SPIE, 2013), p. 89231G .

Bogaerts, W.

Boles, S. T.

J. Huang, L. A. Blanquer, J. Bonefacino, E. R. Logan, D. A. D. Corte, C. Delacourt, B. M. Gallant, S. T. Boles, J. R. Dhan, H.-Y. Tam, and J.-M. Tarascon, “Operando decoding of chemical and thermal events in commercial Na (Li)-ion cells via optical sensors,” Nat. Energy 5 , 674–683 (2020).
[Crossref]

Bondue, B.

M. Loyez, J. Larrieu, S. Chevineau, M. Remmelink, D. Leduc, B. Bondue, P. Lambert, J. Devière, R. Wattiez, and C. Caucheteur, “In situ cancer diagnosis through online plasmonics,” Biosens. Bioelectron. 131, 104–112 (2019).
[Crossref]

Bonefacino, J.

J. Huang, L. A. Blanquer, J. Bonefacino, E. R. Logan, D. A. D. Corte, C. Delacourt, B. M. Gallant, S. T. Boles, J. R. Dhan, H.-Y. Tam, and J.-M. Tarascon, “Operando decoding of chemical and thermal events in commercial Na (Li)-ion cells via optical sensors,” Nat. Energy 5 , 674–683 (2020).
[Crossref]

Boniello, A.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref]

Boon-Brett, L.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - a review,” Sens. Act. B 157 , 329–352 (2011).
[Crossref]

Borriello, A.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref]

Bottomley, A.

A. Bialiayeu, A. Bottomley, D. Prezgot, A. Ianoul, and J. Albert, “Plasmon-enhanced refractometry using silver nanowire coating on tilted fiber Bragg gratings,” Nanotechnology 23, 444012 (2012).
[Crossref]

Brambilla, G.

Brazão, J.

S. Barrias, J. R. Fernandes, J. E. Eiras-Dias, J. Brazão, and P. Martins-Lopes, “Label free DNA-based optical biosensor as a potential system for wine authenticity,” Food Chem. 270, 299–304 (2019).
[Crossref]

Bronnikov, K. A.

D. Paloschi, K. A. Bronnikov, S. Korganbayev, A. A. Wolf, A. Dostovalov, and P. Saccomandi, “3D shape sensing with multicore optical fibers: transformation matrices versus Frenet-Serret equations for real-time application,” IEEE Sens. J. 21, 4599–4609 (2021).
[Crossref]

Brown, T. G.

Bucaro, J.

Budnicki, D.

Bulus Rossini, L. A.

Bures, J.

Burgess, R.

W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy 36 , 2462–2470 (2011).
[Crossref]

Buric, M. P.

P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: review and perspective,” Appl. Phys. Rev. 6, 041302 (2019).
[Crossref]

Butov, O. V.

K. A. Tomyshev, E. S. Manuilovich, D. K. Tazhetdinova, E. I. Dolzhenko, and O. V. Butov, “High-precision data analysis for TFBG-assisted refractometer,” Sens. Act. A 308, 112016 (2020).
[Crossref]

K. A. Tomyshev, D. K. Tazhetdinova, E. S. Manuilovich, and O. V. Butov, “High-resolution fiber optic surface plasmon resonance sensor for biomedical applications,” J. Appl. Phys. 124, 113106 (2018).
[Crossref]

Buttner, W. J.

W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy 36 , 2462–2470 (2011).
[Crossref]

Cai, S.

Y. Si, J. Lao, X. Zhang, Y. Liu, S. Cai, A. G. Vila, K. Li, Y. Huang, Y. Yuan, C. Caucheteur, and T. Guo, “Electrochemical plasmonic fiber-optic sensors for ultra-sensitive heavy metal detection,” J. Lightwave Technol. 37, 3495–3502 (2019).
[Crossref]

X. Zhang, S. Cai, F. Liu, H. Chen, P. Yan, Y. Yuan, T. Guo, and J. Albert, “In situ determination of the complex permittivity of ultrathin H2-infused palladium coatings for plasmonic fiber optic sensors in the near infrared,” J. Mater. Chem. C 6, 5161–5170 (2018).
[Crossref]

Cai, S. S.

S. S. Cai, F. Liu, R. L. Wang, Y. G. Xiao, K. W. Li, C. Caucheteur, and T. Guo, “Narrow bandwidth fiber-optic spectral combs for renewable hydrogen detection,” Sci. China Inf. Sci. 63 , 222401 (2020).
[Crossref]

S. S. Cai, Á González-Vila, X. J. Zhang, T. Guo, and C. Caucheteur, “Palladium-coated plasmonic optical fiber gratings for hydrogen detection,” Opt. Lett. 44 , 4483–4486 (2019).
[Crossref]

Cai, Z.

Calderón, P. A.

I. Floris, J. M. Adam, P. A. Calderón, and S. Sales, “Fiber optic shape sensors: a comprehensive review,” Opt. Lasers Eng. 139, 106508 (2021).
[Crossref]

Camci-Unal, G.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56, 359–367 (2014).
[Crossref]

Campopiano, S.

F. Esposito, L. Sansone, A. Srivastava, F. Baldini, S. Campopiano, F. Chiavaioli, M. Giordano, A. Giannetti, and A. Iadicicco, “Long period grating in double cladding fiber coated with graphene oxide as high-performance optical platform for biosensing,” Biosens. Bioelectron. 172, 112747 (2021).
[Crossref]

F. Esposito, L. Sansone, C. Taddei, S. Campopiano, M. Giordano, and A. Iadicicco, “Ultrasensitive biosensor based on long period grating coated with polycarbonate-graphene oxide multilayer,” Sens. Act. B 274, 517–526 (2018).
[Crossref]

Canning, J.

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkins, P. Dragic, and J. Ballato, “Overview of high temperature fibre Bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibres,” J. Phys.: Photonics 1, 042001 (2019).
[Crossref]

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[Crossref]

Capilla-Gonzalez, G.

Capmany, J.

D. Zheng, J. Madrigal, D. Barrera, S. Sales, and J. Capmany, “Microwave photonic filtering for interrogating FBG-based multicore fiber curvature sensor,” IEEE Photonics Technol. Lett. 29, 1707–1710 (2017).
[Crossref]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” Photon. Technol. Lett. 19 , 966–968 (2007).
[Crossref]

Caravaca-Aguirre, A.

Cardenas-Sevilla, G. A.

Carome, E.

Castillo-Guzmán, A. A.

J. R. Guzmán-Sepúlveda, R. Guzmán-Cabrera, and A. A. Castillo-Guzmán, “Optical sensing using fiber-optic multimode interference devices: a review of nonconventional sensing schemes,” Sensors 21, 1862 (2021).
[Crossref]

Caucheteur, C.

N. Safari-Yazd, K. Chah, C. Caucheteur, and P. Mégret, “Thermal regeneration of tilted Bragg gratings UV photo-inscribed in hydrogen-loaded standard optical fibers,” J. Lightwave Technol. 39, 3582–3590 (2021).
[Crossref]

M. Lobry, M. Loyez, K. Chah, E. M. Hassan, E. Goormaghtigh, M. C. DeRosa, R. Wattiez, and C. Caucheteur, “HER2 biosensing through SPR-envelope tracking in plasmonic optical fiber gratings,” Biomed. Opt. Express 11, 4862–4871 (2020).
[Crossref]

A. Ioannou, A. Theodosiou, C. Caucheteur, and K. Kalli, “Femtosecond laser inscribed tilted gratings for leaky mode excitation in optical fibers,” J. Lightwave Technol. 38 , 1921–1928 (2020).
[Crossref]

S. S. Cai, F. Liu, R. L. Wang, Y. G. Xiao, K. W. Li, C. Caucheteur, and T. Guo, “Narrow bandwidth fiber-optic spectral combs for renewable hydrogen detection,” Sci. China Inf. Sci. 63 , 222401 (2020).
[Crossref]

M. Loyez, E. M. Hassan, M. Lobry, F. Liu, C. Caucheteur, R. Wattiez, M. C. DeRosa, W. G. Willmore, and J. Albert, “Rapid detection of circulating breast cancer cells using a multiresonant optical fiber aptasensor with plasmonic amplification,” ACS Sens. 5, 454–463 (2020).
[Crossref]

M. Lobry, M. Loyez, E. M. Hassan, K. Chah, M. C. DeRosa, E. Goormaghtigh, R. Wattiez, and C. Caucheteur, “Multimodal plasmonic optical fiber grating aptasensor,” Opt. Express 28, 7539 (2020).
[Crossref]

M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
[Crossref]

S. S. Cai, Á González-Vila, X. J. Zhang, T. Guo, and C. Caucheteur, “Palladium-coated plasmonic optical fiber gratings for hydrogen detection,” Opt. Lett. 44 , 4483–4486 (2019).
[Crossref]

M. Loyez, J. Larrieu, S. Chevineau, M. Remmelink, D. Leduc, B. Bondue, P. Lambert, J. Devière, R. Wattiez, and C. Caucheteur, “In situ cancer diagnosis through online plasmonics,” Biosens. Bioelectron. 131, 104–112 (2019).
[Crossref]

M. Sypabekova, S. Korganbayev, Á González-Vila, C. Caucheteur, M. Shaimerdenova, T. Ayupova, A. Bekmurzayeva, L. Vangelista, and D. Tosi, “Functionalized etched tilted fiber Bragg grating aptasensor for label-free protein detection,” Biosens. Bioelectron. 146, 111765 (2019).
[Crossref]

M. Loyez, C. Ribaut, C. Caucheteur, and R. Wattiez, “Functionalized gold electroless-plated optical fiber gratings for reliable surface biosensing,” Sens. Act B 280, 54–61 (2019).
[Crossref]

M. Loyez, M. Lobry, R. Wattiez, and C. Caucheteur, “Optical fiber gratings immunoassays,” Sensors 19, 2595 (2019).
[Crossref]

Y. Si, J. Lao, X. Zhang, Y. Liu, S. Cai, A. G. Vila, K. Li, Y. Huang, Y. Yuan, C. Caucheteur, and T. Guo, “Electrochemical plasmonic fiber-optic sensors for ultra-sensitive heavy metal detection,” J. Lightwave Technol. 37, 3495–3502 (2019).
[Crossref]

M. Loyez, J. Albert, C. Caucheteur, and R. Wattiez, “Cytokeratins biosensing using tilted fiber gratings,” Biosensors 8, 1–8 (2018).
[Crossref]

C. Ribaut, M. Loyez, J. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref]

T. Guo, Á González-vila, M. Loyez, and C. Caucheteur, “Plasmonic optical fiber grating immunosensing: a review,” Sensors 17, 1–19 (2017).
[Crossref]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref]

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Anomalous effective strain-optic constants of nonparaxial optical fiber mode,” Opt. Lett. 39, 578 (2014).
[Crossref]

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[Crossref]

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanowire coatings on optical fibers,” J. Phys. Chem. C 118, 11035–11042 (2014).
[Crossref]

J. M. Renoirt, C. Zhang, M. Debliquy, M. G. Olivier, P. Megret, and C. Caucheteur, “High-refractive-index transparent coatings enhance the optical fiber cladding modes refractometric sensitivity,” Opt. Express 21, 29073–29082 (2013).
[Crossref]

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7, 83–108 (2013).
[Crossref]

A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, “Self-optimized metal coating for fiber plasmonics by electroless deposition,” Opt. Express 19, 18742–18753 (2011).
[Crossref]

C. Caucheteur, M. Debliquy, D. Lahem, and P. Mégret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16, 16854–16859 (2008).
[Crossref]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” Photon. Technol. Lett. 19 , 966–968 (2007).
[Crossref]

Cavillon, M.

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkins, P. Dragic, and J. Ballato, “Overview of high temperature fibre Bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibres,” J. Phys.: Photonics 1, 042001 (2019).
[Crossref]

Celebanska, A.

Chah, K.

Chan, F. Y.

Chan, H. P.

Q. Wu, M. Yang, J. Yuan, H. P. Chan, Y. Ma, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “The use of a bend singlemode-multimode-singlemode (SMS) fibre structure for vibration sensing,” Opt. Laser Technol. 63, 29–33 (2014).
[Crossref]

Chaowei, X.

Y. Chunxia, D. Hui, D. Wei, and X. Chaowei, “Weakly-coupled multicore optical fiber taper-based high-temperature sensor,” Sens. Actuators A 280, 139–144 (2018).
[Crossref]

Chehura, E.

Chen, C.

Chen, C.L.

C.L. Chen, Foundations for Guided-Wave Optics (Wiley, 2007).

Chen, F.

R. Zhou, F. Chen, S. Li, R. Wang, and X. Qiao, “Three-dimensional vector accelerometer using a multicore fiber inscribed with three FBGs,” J. Lightwave Technol. 39, 3244–3250 (2021).
[Crossref]

R. Zhou, X. Qiao, R. Wang, F. Chen, and W. Ma, “An optical fiber sensor based on lateral-offset spliced seven-core fiber for bending and stretching strain measurement,” IEEE Sens. J. 20, 5915–5920 (2020).
[Crossref]

Chen, G.

Y. Chen, F. Tang, Y. Tang, M. J. O’Keefe, and G. Chen, “Mechanism and sensitivity of Fe-C coated long period fiber grating sensors for steel corrosion monitoring of RC structures,” Corros. Sci. 127, 70–81 (2017).
[Crossref]

Y. Chen, F. Tang, Y. Bao, Y. Tang, and G. Chen, “A Fe-C coated long-period fiber grating sensor for corrosion-induced mass loss measurement,” Opt. Lett. 41, 2306–2309 (2016).
[Crossref]

Chen, H.

M. Ma, H. Chen, S. Li, X. Jing, W. Zhang, and M. Wang, “Analysis of a magnetic field sensor based on a Sagnac interferometer using a magnetic fluid-filled birefringent photonic crystal fiber,” IEEE Photonics J. 11 , 1–10 (2019).
[Crossref]

X. Zhang, S. Cai, F. Liu, H. Chen, P. Yan, Y. Yuan, T. Guo, and J. Albert, “In situ determination of the complex permittivity of ultrathin H2-infused palladium coatings for plasmonic fiber optic sensors in the near infrared,” J. Mater. Chem. C 6, 5161–5170 (2018).
[Crossref]

J. Yin, P. Yan, H. Chen, L. Yu, J. Jiang, M. Zhang, and S. Ruan, “All-fiber-optic vector magnetometer based on anisotropic magnetism-manipulation of ferromagnetism nanoparticles,” Appl. Phys. Lett. 110 , 231104 (2017).
[Crossref]

Chen, J.

J. Peng, X. Zhou, S. Jia, Y. Jin, S. Xu, and J. Chen, “High precision strain monitoring for lithium ion batteries based on fiber Bragg grating sensors,” J. Power Sources 443, 226692 (2019).
[Crossref]

Chen, K. P.

Chen, L.

Chen, L. H.

Z. P. Yu, L. Jin, L. H. Chen, J. Li, Y. Ran, and B. O. Guan, “Microfiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 27 , 2575–2578 (2015).
[Crossref]

Chen, M.

F. Wang, Y. Zhang, M. Lu, Y. Du, M. Chen, S. Meng, W. Ji, C. Sun, and W. Peng, “Near-infrared band gold nanoparticles-Au film “hot spot” model based label-free ultratrace lead (II) ions detection via fiber SPR DNAzyme biosensor,” Sens. Act. B 337, 129816 (2021).
[Crossref]

Chen, N.-K.

Chen, Q.

Chen, W.

W. Chen, Y. Zhang, H. Yang, Y. Qiu, H. Li, Z. Chen, and C. Yu, “Non-invasive measurement of vital signs based on seven-core fiber interferometer,” IEEE Sens. J. 21, 10703–10710 (2021).
[Crossref]

J. Yang, L. Zhou, J. Huang, C. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Act B 207, 477–480 (2015).
[Crossref]

Chen, X.

R. Wang, Z. Li, X. Chen, N. Hu, Y. Xiao, K. Li, and T. Guo, “Mode Splitting in ITO-nanocoated tilted fiber Bragg gratings for vector twist measurement,” J. Lightwave Technol 39 , 4151–4157 (2021).
[Crossref]

X. Chen, F. Du, T. Guo, J. Lao, X. Zhang, Z. Zhang, F. Liu, J. Li, C. Chen, and B.-O. Guan, “Liquid crystal-embedded tilted fiber grating electric field intensity sensor,” J. Lightwave Technol. 35 , 3347–3353 (2017).
[Crossref]

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J 8, 1292–1298 (2008).
[Crossref]

K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Low thermal sensitivity grating devices based on ex-45° tilting structure capable of forward-propagating cladding modes coupling,” J. Lightwave Technol. 24, 5087–5094 (2006).
[Crossref]

Chen, Y.

Y. Chen, Y. Hu, H. Cheng, F. Yan, Q. Lin, Y. Chen, P. Wu, L. Chen, G. Liu, G. Peng, Y. Luo, and Z. Chen, “Side-polished single-mode-multimode-single-mode fiber structure for the vector magnetic field sensing,” J. Lightwave Technol. 38 , 5837–5843 (2020).
[Crossref]

Y. Chen, Y. Hu, H. Cheng, F. Yan, Q. Lin, Y. Chen, P. Wu, L. Chen, G. Liu, G. Peng, Y. Luo, and Z. Chen, “Side-polished single-mode-multimode-single-mode fiber structure for the vector magnetic field sensing,” J. Lightwave Technol. 38 , 5837–5843 (2020).
[Crossref]

Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic nanoparticles functionalized few-mode-fiber-based plasmonic vector magnetometer,” Nanomaterials 9 , 785 (2019).
[Crossref]

F. Tang, Z. Li, Y. Chen, H. N. Li, J. Huang, and M. J. O’Keefe, “Monitoring passive film growth on steel using Fe-C coated long period grating fiber sensor,” IEEE Sens. J. 19, 6748–6755 (2019).
[Crossref]

Y. Chen, F. Tang, Y. Tang, M. J. O’Keefe, and G. Chen, “Mechanism and sensitivity of Fe-C coated long period fiber grating sensors for steel corrosion monitoring of RC structures,” Corros. Sci. 127, 70–81 (2017).
[Crossref]

Y. Chen, F. Tang, Y. Bao, Y. Tang, and G. Chen, “A Fe-C coated long-period fiber grating sensor for corrosion-induced mass loss measurement,” Opt. Lett. 41, 2306–2309 (2016).
[Crossref]

Chen, Z.

W. Chen, Y. Zhang, H. Yang, Y. Qiu, H. Li, Z. Chen, and C. Yu, “Non-invasive measurement of vital signs based on seven-core fiber interferometer,” IEEE Sens. J. 21, 10703–10710 (2021).
[Crossref]

Y. Chen, Y. Hu, H. Cheng, F. Yan, Q. Lin, Y. Chen, P. Wu, L. Chen, G. Liu, G. Peng, Y. Luo, and Z. Chen, “Side-polished single-mode-multimode-single-mode fiber structure for the vector magnetic field sensing,” J. Lightwave Technol. 38 , 5837–5843 (2020).
[Crossref]

Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic nanoparticles functionalized few-mode-fiber-based plasmonic vector magnetometer,” Nanomaterials 9 , 785 (2019).
[Crossref]

Cheng, H.

Cheng, P.

F. Mumtaz, P. Cheng, C. Li, S. Cheng, C. Du, M. Yang, Y. Dai, and W. Hu, “A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer,” IEEE Sens. J. 20, 7074–7081 (2020).
[Crossref]

Cheng, Q.

Cheng, S.

F. Mumtaz, P. Cheng, C. Li, S. Cheng, C. Du, M. Yang, Y. Dai, and W. Hu, “A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer,” IEEE Sens. J. 20, 7074–7081 (2020).
[Crossref]

W. Hu, C. Li, S. Cheng, F. Mumtaz, C. Du, and M. Yang, “Etched multicore fiber Bragg gratings for refractive index sensing with temperature in-line compensation,” OSA Continuum 3 , 1058–1067 (2020).
[Crossref]

Cheng, X.

J. Cui, H. Luo, J. Lu, X. Cheng, and H. Y. Tam, “Random forest assisted vector displacement sensor based on a multicore fiber,” Opt. Express 29, 15852–15864 (2021).
[Crossref]

X. Cheng and M. Pecht, “In situ stress measurement techniques on Li-ion battery electrodes: a review,” Energies 10, 591 (2017).
[Crossref]

Chevineau, S.

M. Loyez, J. Larrieu, S. Chevineau, M. Remmelink, D. Leduc, B. Bondue, P. Lambert, J. Devière, R. Wattiez, and C. Caucheteur, “In situ cancer diagnosis through online plasmonics,” Biosens. Bioelectron. 131, 104–112 (2019).
[Crossref]

C. Ribaut, M. Loyez, J. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref]

Chew, W. C.

F. L. Teixeira and W. C. Chew, “PML-FDTD in cylindrical and spherical grids,” IEEE Microw. and Guided Waves Lett. 7 , 285–287 (1997).
[Crossref]

Chiang, K. S.

L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. Sun, X. Dong, and Y. Hou, “Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection,” IEEE Photonics J. 4 , 2095–2104 (2012).
[Crossref]

Chiavaioli, F.

F. Esposito, L. Sansone, A. Srivastava, F. Baldini, S. Campopiano, F. Chiavaioli, M. Giordano, A. Giannetti, and A. Iadicicco, “Long period grating in double cladding fiber coated with graphene oxide as high-performance optical platform for biosensing,” Biosens. Bioelectron. 172, 112747 (2021).
[Crossref]

F. Chiavaioli and D. Janner, “Fiber optic sensing with lossy mode resonances: applications and perspectives,” J. Lightwave Technol. 39 , 3855–3870 (2021).
[Crossref]

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors 7, 23 (2017).
[Crossref]

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87, 12024–12031 (2015).
[Crossref]

Chiniforooshan, Y.

Choi, B.

A. Raghavan, P. Kiesel, L. W. Sommer, J. Schwartz, A. Lochbaum, A. Hegyi, A. Schuh, K. Arakaki, B. Saha, A. Ganguli, K. H. Kim, C. Kim, H. J. Hah, S. kim, G.-O. Hwang, G.-C. Chung, B. Choi, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance,” J. Power Sources 341, 466–473 (2017).
[Crossref]

Cholula-Diaz, J. L.

A. Vernet-Crua, D. Medina-Cruz, E. Mostafavi, A. Benko, J. L. Cholula-Diaz, M. Suravana, H. Vahidi, H. Barabadi, and T. J. Webster, “Nanobiosensors for theranostic applications,” in Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications (Elsevier, 2021), Chap. 23, pp. 511–543 .

Chorpening, B. T.

P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: review and perspective,” Appl. Phys. Rev. 6, 041302 (2019).
[Crossref]

Chu, P. L.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11, 352–354 (1999).
[Crossref]

Chuang, T. J.

C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, “Characteristics of hydrogenated fiber Bragg gratings,” Appl. Phys. A 64, 191–197 (1997).
[Crossref]

Chung, G.-C.

A. Raghavan, P. Kiesel, L. W. Sommer, J. Schwartz, A. Lochbaum, A. Hegyi, A. Schuh, K. Arakaki, B. Saha, A. Ganguli, K. H. Kim, C. Kim, H. J. Hah, S. kim, G.-O. Hwang, G.-C. Chung, B. Choi, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance,” J. Power Sources 341, 466–473 (2017).
[Crossref]

Chunlian, L.

Z. Shuo, D. Sifan, W. Zemin, S. Cuiting, C. Xudong, M. Yiwei, Z. Lei, L. Chunlian, G. Tao, Y. Wenlei, and Y. Libo, “A miniature SMS-LPG bending sensor with high sensitivity based on multimode fiber embedded-LPG,” Sens. Actuators, A 295, 31–36 (2019).
[Crossref]

Chunxia, Y.

Y. Chunxia, D. Hui, D. Wei, and X. Chaowei, “Weakly-coupled multicore optical fiber taper-based high-temperature sensor,” Sens. Actuators A 280, 139–144 (2018).
[Crossref]

Claes, T.

Coelho, L.

J. M. M. M. de Almeida, H. Vasconcelos, P. A. S. Jorge, and L. Coelho, “Plasmonic optical fiber sensor based on double step growth of gold nano-islands,” Sensors 18 , 1–13 (2018).
[Crossref]

L. Coelho, J. M. M. M. de Almeida, J. L. Santos, and D. Viegas, “Fiber optic hydrogen sensor based on an etched Bragg grating coated with palladium,” Appl. Opt. 54 , 10342–10348 (2015).
[Crossref]

S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photon. Technol. Lett. 25 , 401–403 (2013).
[Crossref]

Cojoc, G.

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “Three-dimensional correlative single-cell imaging utilizing fluorescence and refractive index tomography,” J. Biophotonics 11 , 1–11 (2018).
[Crossref]

Colao, A.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref]

Colchester, R. J.

Cole, J. H.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
[Crossref]

Collins, Z. M.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Consales, M.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref]

Cook, K.

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkins, P. Dragic, and J. Ballato, “Overview of high temperature fibre Bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibres,” J. Phys.: Photonics 1, 042001 (2019).
[Crossref]

Cordeiro, C. M. B.

J. W. Costa, M. A. R. Franco, V. A. Serrão, C. M. B. Cordeiro, and M. T. R. Giraldi, “Macrobending SMS fiber-optic anemometer and flow sensor,” Opt. Fiber Technol. 52, 101981 (2019).
[Crossref]

Correia, R.

L. L. Liu, L. Marques, R. Correia, S. P. Morgan, S. W. Lee, P. Tighe, L. Fairclough, and S. Korposh, “Highly sensitive label-free antibody detection using a long period fibre grating sensor,” Sens. Act. B 271, 24–32 (2018).
[Crossref]

Corres, J. M.

I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]

Corte, D. A. D.

J. Huang, L. A. Blanquer, J. Bonefacino, E. R. Logan, D. A. D. Corte, C. Delacourt, B. M. Gallant, S. T. Boles, J. R. Dhan, H.-Y. Tam, and J.-M. Tarascon, “Operando decoding of chemical and thermal events in commercial Na (Li)-ion cells via optical sensors,” Nat. Energy 5 , 674–683 (2020).
[Crossref]

Costa, J. W.

J. W. Costa, M. A. R. Franco, V. A. Serrão, C. M. B. Cordeiro, and M. T. R. Giraldi, “Macrobending SMS fiber-optic anemometer and flow sensor,” Opt. Fiber Technol. 52, 101981 (2019).
[Crossref]

Costanzo Caso, P. A.

Coyle, J. P.

Crowther, J. R.

J. R. Crowther, The ELISA Guidebook, 2nd ed., (Springer International Publishing, 2009).

Cruz, J. L.

Cuando-Espitia, N.

Cui, J.

Cuiting, S.

Z. Shuo, D. Sifan, W. Zemin, S. Cuiting, C. Xudong, M. Yiwei, Z. Lei, L. Chunlian, G. Tao, Y. Wenlei, and Y. Libo, “A miniature SMS-LPG bending sensor with high sensitivity based on multimode fiber embedded-LPG,” Sens. Actuators, A 295, 31–36 (2019).
[Crossref]

Cunniff, B.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Cusano, A.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref]

Cutolo, A.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref]

Cuttica, D. F.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56, 359–367 (2014).
[Crossref]

Czapla, A.

Dabrowski, R.

Daems, D.

B. Peeters, S. Safdar, D. Daems, P. Goos, D. Spasic, and J. Lammertyn, “Solid-phase PCR-amplified DNAzyme activity for real-time FO-SPR detection of the MCR-2 gene,” Anal. Chem. 92 , 10783–10791 (2020).
[Crossref]

D. Daems, B. Peeters, F. Delport, T. Remans, J. Lammertyn, and D. Spasic, “Identification and quantification of celery allergens using fiber optic surface plasmon resonance PCR,” Sensors 17 , 1754 (2017).
[Crossref]

Dai, J. X.

J. X. Dai, L. Zhu, G. P. Wang, F. Xiang, Y. H. Qin, M. Wang, and M. H. Yang, “Optical fiber grating hydrogen sensors: a review,” Sensors 17 , 577 (2017).
[Crossref]

Dai, Y.

F. Mumtaz, P. Cheng, C. Li, S. Cheng, C. Du, M. Yang, Y. Dai, and W. Hu, “A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer,” IEEE Sens. J. 20, 7074–7081 (2020).
[Crossref]

Dam, B.

Dambournet, D.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Damman, P.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[Crossref]

Dandapat, K.

S. M. Tripathi, K. Dandapat, W. J. Bock, P. Mikulic, J. Perreault, and B. Sellamuthu, “Gold coated dual-resonance long-period fiber gratings (DR-LPFG) based aptasensor for cyanobacterial toxin detection,” Sens. Bio-Sensing Res. 25, 100289 (2019).
[Crossref]

Dang, Y.

Danicic, A.

Danilov, D. L.

L. H. J. Raijmakers, D. L. Danilov, R. A. Eichel, and P. H. L. Notten, “A review on various temperature-indication methods for Li-ion batteries,” Appl. Energy 240, 918–945 (2019).
[Crossref]

David, M.

M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
[Crossref]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15 , 1442–1463 (1997).
[Crossref]

Dawood, M.

A. M. Abdalla, S. Hossain, O. B. Nisfindy, A. T. Azad, M. Dawood, and A. K. Azad, “Hydrogen production, storage, transportation and key challenges with applications: a review,” Energy Convers. Manage. 165, 602–627 (2018).
[Crossref]

De Acha, N.

I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]

de Almeida, J. M. M. M.

J. M. M. M. de Almeida, H. Vasconcelos, P. A. S. Jorge, and L. Coelho, “Plasmonic optical fiber sensor based on double step growth of gold nano-islands,” Sensors 18 , 1–13 (2018).
[Crossref]

L. Coelho, J. M. M. M. de Almeida, J. L. Santos, and D. Viegas, “Fiber optic hydrogen sensor based on an etched Bragg grating coated with palladium,” Appl. Opt. 54 , 10342–10348 (2015).
[Crossref]

De Angelis, F.

M. Oliverio, S. Perotto, G. C. Messina, L. Lovato, and F. De Angelis, “Chemical functionalization of plasmonic surface biosensors: A tutorial review on issues, strategies, and costs,” ACS Appl. Mater. Interfaces 9, 29394–29411 (2017).
[Crossref]

de Ocáriz, I. S.

Debliquy, M.

M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
[Crossref]

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanowire coatings on optical fibers,” J. Phys. Chem. C 118, 11035–11042 (2014).
[Crossref]

J. M. Renoirt, C. Zhang, M. Debliquy, M. G. Olivier, P. Megret, and C. Caucheteur, “High-refractive-index transparent coatings enhance the optical fiber cladding modes refractometric sensitivity,” Opt. Express 21, 29073–29082 (2013).
[Crossref]

C. Caucheteur, M. Debliquy, D. Lahem, and P. Mégret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16, 16854–16859 (2008).
[Crossref]

Del Villar, I.

D. Santano, A. Urrutia, C. R. Zamarreno, and I. Del Villar, “Advances in fiber optic DNA-based sensors: A Review,” IEEE Sens. J. 21, 12679–12691 (2021).
[Crossref]

A. Urrutia, I. Del Villar, P. Zubiate, and C. R. Zamarreño, “A comprehensive review of optical fiber refractometers: toward a standard comparative criterion,” Laser Photonics Rev. 13 , 1900094 (2019).
[Crossref]

I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]

I. Del Villar, C. R. Zamarreno, M. Hernaez, F. J. Arregui, and I. R. Matias, “Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications,” J. Lightwave Technol. 28, 111–117 (2010).
[Crossref]

I. Del Villar and I. R. Matias, Optical Fibre sensors: Fundamentals for Development of Optimized Devices (Wiley-IEEE Press, 2020).

Delacourt, C.

J. Huang, L. A. Blanquer, J. Bonefacino, E. R. Logan, D. A. D. Corte, C. Delacourt, B. M. Gallant, S. T. Boles, J. R. Dhan, H.-Y. Tam, and J.-M. Tarascon, “Operando decoding of chemical and thermal events in commercial Na (Li)-ion cells via optical sensors,” Nat. Energy 5 , 674–683 (2020).
[Crossref]

Delgado-Macuil, R.

R. Delgado-Macuil, K. González-León, and G. Beltrán-Pérez, “Neuropsin (Opn5) detection in the brain tissue of a murine model using long period fiber grating (LPFG),” Opt. Laser Technol. 139, 1–9 (2021).
[Crossref]

Delgado-Pinar, M.

Delport, F.

D. Daems, B. Peeters, F. Delport, T. Remans, J. Lammertyn, and D. Spasic, “Identification and quantification of celery allergens using fiber optic surface plasmon resonance PCR,” Sensors 17 , 1754 (2017).
[Crossref]

I. Antohe, K. Schouteden, P. Goos, F. Delport, D. Spasic, and J. Lammertyn, “Thermal annealing of gold coated fiber optic surfaces for improved plasmonic biosensing,” Sens. Actu. B 229, 678–685 (2016).
[Crossref]

Denasi, A.

F. Khan, A. Denasi, D. Barrera, J. Madrigal, S. Sales, and S. Misra, “Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments,” IEEE Sens. J. 19, 5878–5884 (2019).
[Crossref]

Deng, C.

Y. Yu, X. Zhang, K. Wang, Z. Wang, H. Sun, Y. Yang, C. Deng, Y. Huang, and T. Wang, “Coexistence of transmission mechanisms for independent multi-parameter sensing in a silica capillary-based cascaded structure,” Opt. Express 29, 27938–27950 (2021)..
[Crossref]

F. Liu, X. Tong, C. Zhang, C. Deng, Q. Xiong, Z. Zheng, and P. Wang, “Multi-peak detection algorithm based on the Hilbert transform for optical FBG sensing,” Opt. Fiber Technol. 45, 47–52 (2018).
[Crossref]

Deng, M.

L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. Sun, X. Dong, and Y. Hou, “Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection,” IEEE Photonics J. 4 , 2095–2104 (2012).
[Crossref]

Deng, Y.

DeRosa, M. C.

M. Lobry, M. Loyez, K. Chah, E. M. Hassan, E. Goormaghtigh, M. C. DeRosa, R. Wattiez, and C. Caucheteur, “HER2 biosensing through SPR-envelope tracking in plasmonic optical fiber gratings,” Biomed. Opt. Express 11, 4862–4871 (2020).
[Crossref]

M. Lobry, M. Loyez, E. M. Hassan, K. Chah, M. C. DeRosa, E. Goormaghtigh, R. Wattiez, and C. Caucheteur, “Multimodal plasmonic optical fiber grating aptasensor,” Opt. Express 28, 7539 (2020).
[Crossref]

M. Loyez, E. M. Hassan, M. Lobry, F. Liu, C. Caucheteur, R. Wattiez, M. C. DeRosa, W. G. Willmore, and J. Albert, “Rapid detection of circulating breast cancer cells using a multiresonant optical fiber aptasensor with plasmonic amplification,” ACS Sens. 5, 454–463 (2020).
[Crossref]

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83, 7027–7034 (2011).
[Crossref]

Desjardins, A. E.

Desroches, J.

J. Desroches, M. Jermyn, M. Pinto, F. Picot, M.-A. Tremblay, S. Obaid, E. Marple, K. Urmey, D. Trudel, G. Soulez, M.-C. Guiot, B. C. Wilson, K. Petrecca, and F. Leblond, “A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy,” Sci. Rep. 8, 1792 (2018).
[Crossref]

Devière, J.

M. Loyez, J. Larrieu, S. Chevineau, M. Remmelink, D. Leduc, B. Bondue, P. Lambert, J. Devière, R. Wattiez, and C. Caucheteur, “In situ cancer diagnosis through online plasmonics,” Biosens. Bioelectron. 131, 104–112 (2019).
[Crossref]

Dhan, J. R.

J. Huang, L. A. Blanquer, J. Bonefacino, E. R. Logan, D. A. D. Corte, C. Delacourt, B. M. Gallant, S. T. Boles, J. R. Dhan, H.-Y. Tam, and J.-M. Tarascon, “Operando decoding of chemical and thermal events in commercial Na (Li)-ion cells via optical sensors,” Nat. Energy 5 , 674–683 (2020).
[Crossref]

Dianov, E. M.

DiCarlo, J. J.

Didar, T. F.

A. Shakeri, N. A. Jarad, A. Leung, L. Soleymani, and T. F. Didar, “Biofunctionalization of glass- and paper-based microfluidic devices: a review,” Adv. Mater. Interfaces 6, 1–16 (2019).
[Crossref]

Diez, A.

Dimitriou, P.

P. Dimitriou and T. Tsujimura, “A review of hydrogen as a compression ignition engine fuel,” Int. J. Hydrogen Energy 42 , 24470–24486 (2017).
[Crossref]

Ding, D. G. H.

Ding, M.

M. Nascimento, S. Movais, M. Ding, M. S. Ferreira, S. Koch, S. Passerini, and J. Pinto, “Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries,” J. Power Sources 410, 1–9 (2019).
[Crossref]

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Investigation of single-mode–multimode–single-mode and single-mode–tapered-multimode–single-mode fiber structures and their application for refractive index sensing,” J. Opt. Soc. Am. B 28, 1180–1186 (2011).
[Crossref]

Diodato, L.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref]

Dochow, S.

Doi, T.

T. Yamanaka, H. Nakagawa, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “In situ Raman spectroscopic studies on concentration of electrolyte salt in lithium ion batteries by using ultrafine multifiber probes,” ChemSusChem 10 , 855–861 (2017).
[Crossref]

Dokmeci, M. R.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56, 359–367 (2014).
[Crossref]

Dolzhenko, E. I.

K. A. Tomyshev, E. S. Manuilovich, D. K. Tazhetdinova, E. I. Dolzhenko, and O. V. Butov, “High-precision data analysis for TFBG-assisted refractometer,” Sens. Act. A 308, 112016 (2020).
[Crossref]

Domanski, A. W.

Domi, Y.

T. Yamanaka, H. Nakagawa, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “In situ Raman spectroscopic studies on concentration of electrolyte salt in lithium ion batteries by using ultrafine multifiber probes,” ChemSusChem 10 , 855–861 (2017).
[Crossref]

Domingues, M. F.

S. Novais, M. Nascimento, L. Grande, M. F. Domingues, P. Antunes, N. Alberto, C. Leitao, R. Oliveira, S. Koch, G. T. Kim, S. Passerini, and J. Pinto, “Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors,” Sensors 16 , 1394 (2016).
[Crossref]

Dominik, M.

M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Act. B 250, 32–38 (2017).
[Crossref]

Donegan, J. F.

C. Shen, C. Zhong, D. Liu, X. Xian, J. Zheng, J. Wang, Y. Semenova, G. Farrell, J. Albert, and J. F. Donegan, “Measurements of milli-Newton surface tension forces with tilted fiber Bragg gratings,” Opt. Lett. 43, 2–5 (2018).
[Crossref]

C. Shen, X. Lian, V. Kavungal, C. Zhong, D. Liu, Y. Semenova, G. Farrell, J. Albert, and J. F. Donegan, “Optical spectral sweep comb liquid flow rate sensor,” Opt. Lett. 43, 751–754 (2018).
[Crossref]

Dong, B.

Dong, J.

Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic nanoparticles functionalized few-mode-fiber-based plasmonic vector magnetometer,” Nanomaterials 9 , 785 (2019).
[Crossref]

Dong, S.

Dong, X.

K. Wang, X. Dong, M. H. Köhler, P. Kienle, Q. Bian, M. Jakobi, and A. W. Koch, “Advances in optical fiber sensors based on multimode interference (MMI): a review,” IEEE Sens. J. 21, 132–142 (2020).
[Crossref]

L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. Sun, X. Dong, and Y. Hou, “Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection,” IEEE Photonics J. 4 , 2095–2104 (2012).
[Crossref]

Donlagic, D.

S. Pevec and D. Donlagić, “Multiparameter fiber-optic sensors: a review,” Opt. Eng. 58 , 072009 (2019).
[Crossref]

Dostovalov, A.

D. Paloschi, K. A. Bronnikov, S. Korganbayev, A. A. Wolf, A. Dostovalov, and P. Saccomandi, “3D shape sensing with multicore optical fibers: transformation matrices versus Frenet-Serret equations for real-time application,” IEEE Sens. J. 21, 4599–4609 (2021).
[Crossref]

Dragic, P.

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkins, P. Dragic, and J. Ballato, “Overview of high temperature fibre Bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibres,” J. Phys.: Photonics 1, 042001 (2019).
[Crossref]

Dragomir, A.

Drazewski, T.

M. Śmietana, T. Drażewski, P. Firek, P. Mikulic, and W. J. Bock, “Comparison of Al2O3 nano-overlays deposited with magnetron sputtering and atomic layer deposition on optical fibers for sensing purpose,” in Micro/Nano Materials, Devices, and Systems (SPIE, 2013), p. 89231G .

Drubin, D. G.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Du, C.

Du, F.

Du, L.

D. Yang, L. Du, Z. Xu, Y. Jiang, J. Xu, M. Wang, Y. Bai, and H. Wang, “Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid,” Appl. Phys. Lett. 104 , 061903 (2014).
[Crossref]

Du, Y.

F. Wang, Y. Zhang, M. Lu, Y. Du, M. Chen, S. Meng, W. Ji, C. Sun, and W. Peng, “Near-infrared band gold nanoparticles-Au film “hot spot” model based label-free ultratrace lead (II) ions detection via fiber SPR DNAzyme biosensor,” Sens. Act. B 337, 129816 (2021).
[Crossref]

Duan, F.

Duan, L.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

Dubois, V.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref]

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40 , 1170–1172 (2004).
[Crossref]

Dukenbayev, K.

A. Bekmurzayeva, K. Dukenbayev, M. Shaimerdenova, I. Bekniyazov, T. Ayupova, M. Sypabekova, C. Molardi, and D. Tosi, “Etched fiber Bragg grating biosensor functionalized with aptamers for detection of thrombin,” Sensors 18 , 4298 (2018).
[Crossref]

Durana, G.

J. Amorebieta, A. Ortega-Gomez, G. Durana, R. Fernandez, E. Antonio-Lopez, A. Schulzgen, J. Zubia, R. Amezcua-Correa, and J. Villatoro, “Compact omnidirectional multicore fiber-based vector bending sensor,” Sci. Rep. 11, 5989 (2021).
[Crossref]

J. Amorebieta, A. Ortega-Gomez, G. Durana, R. Fernández, E. Antonio-Lopez, A. Schülzgen, J. Zubia, R. Amezcua-Correa, and J. Villatoro, “Highly sensitive multicore fiber accelerometer for low frequency vibration sensing,” Sci. Rep. 10, 1–11 (2020).
[Crossref]

J. Amorebieta, G. Durana, A. Ortega-Gomez, R. Fernández, J. Velasco, I. S. de Ocáriz, J. Zubia, J. E. Antonio-López, A. Schülzgen, and R. Amezcua-Correa, “Packaged multi-core fiber interferometer for high-temperature sensing,” J. Lightwave Technol. 37, 2328–2334 (2019).
[Crossref]

J. Villatoro, O. Arrizabalaga, G. Durana, I. Sáez de Ocáriz, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Accurate strain sensing based on super-mode interference in strongly coupled multi-core optical fibres,” Sci. Rep. 7, 4451 (2017).
[Crossref]

Dvoyrin, V. V.

E. S. Manuylovich, V. V. Dvoyrin, and S. K. Turitsyn, “Fast mode decomposition in few-mode fibers,” Nat. Commun. 11, 5507 (2020).
[Crossref]

Dyer, S. D.

S. D. Dyer, P. A. Williams, R. J. Espejo, J. D. Kofler, and S. M. Etzel, “Fundamental limits in fiber Bragg grating peak wavelength measurements (invited paper),” Proc. SPIE 5855, 88–93 (2005).
[Crossref]

Eichel, R. A.

L. H. J. Raijmakers, D. L. Danilov, R. A. Eichel, and P. H. L. Notten, “A review on various temperature-indication methods for Li-ion batteries,” Appl. Energy 240, 918–945 (2019).
[Crossref]

Eiras-Dias, J. E.

S. Barrias, J. R. Fernandes, J. E. Eiras-Dias, J. Brazão, and P. Martins-Lopes, “Label free DNA-based optical biosensor as a potential system for wine authenticity,” Food Chem. 270, 299–304 (2019).
[Crossref]

Elosua, C.

I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]

Elsmann, T.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bahtia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11, 2100–2105 (1994).
[Crossref]

Ertman, S.

Espejo, R. J.

S. D. Dyer, P. A. Williams, R. J. Espejo, J. D. Kofler, and S. M. Etzel, “Fundamental limits in fiber Bragg grating peak wavelength measurements (invited paper),” Proc. SPIE 5855, 88–93 (2005).
[Crossref]

Esposito, F.

F. Esposito, L. Sansone, A. Srivastava, F. Baldini, S. Campopiano, F. Chiavaioli, M. Giordano, A. Giannetti, and A. Iadicicco, “Long period grating in double cladding fiber coated with graphene oxide as high-performance optical platform for biosensing,” Biosens. Bioelectron. 172, 112747 (2021).
[Crossref]

F. Esposito, L. Sansone, C. Taddei, S. Campopiano, M. Giordano, and A. Iadicicco, “Ultrasensitive biosensor based on long period grating coated with polycarbonate-graphene oxide multilayer,” Sens. Act. B 274, 517–526 (2018).
[Crossref]

Etzel, S. M.

S. D. Dyer, P. A. Williams, R. J. Espejo, J. D. Kofler, and S. M. Etzel, “Fundamental limits in fiber Bragg grating peak wavelength measurements (invited paper),” Proc. SPIE 5855, 88–93 (2005).
[Crossref]

Eznaveh, Z. S.

Fairclough, L.

L. L. Liu, L. Marques, R. Correia, S. P. Morgan, S. W. Lee, P. Tighe, L. Fairclough, and S. Korposh, “Highly sensitive label-free antibody detection using a long period fibre grating sensor,” Sens. Act. B 271, 24–32 (2018).
[Crossref]

Fan, H.

Fangfang, Z.

Farka, Z.

E. Makhneva, L. Barillas, Z. Farka, M. Pastucha, P. Skládal, K.-D. Weltmann, and K. Fricke, “Functional plasma polymerized surfaces for biosensing,” ACS Appl. Mater. Interfaces 12, 17100–17112 (2020).
[Crossref]

Farrell, G.

F. Wei, D. Liu, Z. Wang, Z. Wang, G. Farrell, Q. Wu, G.-D. Peng, and Y. Semenova, “Enhancing the visibility of Vernier effect in a tri-microfiber coupler fiber loop interferometer for ultrasensitive refractive index and temperature sensing,” J. LightwaveTechnol. 39, 1523–1529 (2021).
[Crossref]

C. Shen, X. Lian, V. Kavungal, C. Zhong, D. Liu, Y. Semenova, G. Farrell, J. Albert, and J. F. Donegan, “Optical spectral sweep comb liquid flow rate sensor,” Opt. Lett. 43, 751–754 (2018).
[Crossref]

P. Wang, H. Zhao, X. Wang, G. Farrell, and G. Brambilla, “A review of multimode interference in tapered optical fibers and related applications,” Sensors 18, 858 (2018).
[Crossref]

C. Shen, C. Zhong, D. Liu, X. Xian, J. Zheng, J. Wang, Y. Semenova, G. Farrell, J. Albert, and J. F. Donegan, “Measurements of milli-Newton surface tension forces with tilted fiber Bragg gratings,” Opt. Lett. 43, 2–5 (2018).
[Crossref]

Q. Wu, M. Yang, J. Yuan, H. P. Chan, Y. Ma, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “The use of a bend singlemode-multimode-singlemode (SMS) fibre structure for vibration sensing,” Opt. Laser Technol. 63, 29–33 (2014).
[Crossref]

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Investigation of single-mode–multimode–single-mode and single-mode–tapered-multimode–single-mode fiber structures and their application for refractive index sensing,” J. Opt. Soc. Am. B 28, 1180–1186 (2011).
[Crossref]

S. Mathews, G. Farrell, and Y. Semenova, “Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements,” Appl. Opt. 50, 2628–2635 (2011).
[Crossref]

Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Bent SMS fibre structure for temperature measurement,” Electron. Lett. 46, 1129–1130 (2010).
[Crossref]

A. M. Hatta, Y. Semenova, G. Rajan, P. Wang, J. Zheng, and G. Farrell, “Analysis of temperature dependence for a ratiometric wavelength measurement system using SMS fiber structure based edge filters,” Opt. Commun. 283, 1291–1295 (2010).
[Crossref]

Q. Wang, G. Farrell, and W. Yan, “Investigation on single-mode–multimode–single-mode fiber structure,” J. Lightwave Technol. 26, 512–519 (2008).
[Crossref]

Fasano, A.

Fazzi, L.

L. Fazzi and R. M. Groves, “Demodulation of a tilted fibre Bragg grating transmission signal using α-shape modified Delaunay triangulation,” Measurement 166, 108197 (2020).
[Crossref]

Feder, K. S.

Fedyanin, D. Y.

Y. V. Stebunov, D. I. Yakubovsky, D. Y. Fedyanin, A. V. Arsenin, and V. S. Volkov, “Superior sensitivity of copper-based plasmonic biosensors,” Langmuir 34, 4681–4687 (2018).
[Crossref]

Fender, A.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J 8, 1292–1298 (2008).
[Crossref]

Feng, D.

Feng, W. J.

X. Q. Lei, Y. T. Yu, W. J. Feng, B. J. Peng, and X. D. Li, “A novel fiber temperature sensor with liquid-crystal filled SM-NC-SM structure,” J. Optoelectron. Laser 26, 2278–2282 (2015).
[Crossref]

Feng, Z.

R. Wang, M. Tang, S. Fu, Z. Feng, W. Tong, and D. Liu, “Spatially arrayed long period gratings in multicore fiber by programmable electrical arc discharge,” IEEE Photonics J. 9, 4500310 (2017).
[Crossref]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

Fernandes, J. R.

S. Barrias, J. R. Fernandes, J. E. Eiras-Dias, J. Brazão, and P. Martins-Lopes, “Label free DNA-based optical biosensor as a potential system for wine authenticity,” Food Chem. 270, 299–304 (2019).
[Crossref]

Fernandez, M. P.

Fernandez, R.

J. Amorebieta, A. Ortega-Gomez, G. Durana, R. Fernandez, E. Antonio-Lopez, A. Schulzgen, J. Zubia, R. Amezcua-Correa, and J. Villatoro, “Compact omnidirectional multicore fiber-based vector bending sensor,” Sci. Rep. 11, 5989 (2021).
[Crossref]

Fernández, R.

Ferreira, M. S.

M. Nascimento, S. Movais, M. Ding, M. S. Ferreira, S. Koch, S. Passerini, and J. Pinto, “Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries,” J. Power Sources 410, 1–9 (2019).
[Crossref]

M. Nascimento, M. S. Ferreira, and J. L. Pinto, “Simultaneous sensing of temperature and bi-directional strain in a prismatic Li-ion battery,” Batteries 4 , 23 (2018).
[Crossref]

M. Nascimento, T. Paixão, M. S. Ferreira, and J. Pinto, “Thermal mapping of a lithium polymer batteries pack with FBGs network,” Batteries 4 , 67 (2018).
[Crossref]

Firek, P.

M. Śmietana, T. Drażewski, P. Firek, P. Mikulic, and W. J. Bock, “Comparison of Al2O3 nano-overlays deposited with magnetron sputtering and atomic layer deposition on optical fibers for sensing purpose,” in Micro/Nano Materials, Devices, and Systems (SPIE, 2013), p. 89231G .

Fleming, J. W.

Flores-Bravo, J. A.

Floris, I.

I. Floris, J. M. Adam, P. A. Calderón, and S. Sales, “Fiber optic shape sensors: a comprehensive review,” Opt. Lasers Eng. 139, 106508 (2021).
[Crossref]

Forster, R.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Fortier, A.

A. Fortier, M. Tsao, N. D. Williard, Y. Xing, and M. G. Pecht, “Preliminary study on integration of fiber optic Bragg grating sensors in li-ion batteries and in situ strain and temperature monitoring of battery cells,” Energies 10 , 838 (2017).
[Crossref]

Francis, T. J.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83, 7027–7034 (2011).
[Crossref]

Franco, M. A. R.

J. W. Costa, M. A. R. Franco, V. A. Serrão, C. M. B. Cordeiro, and M. T. R. Giraldi, “Macrobending SMS fiber-optic anemometer and flow sensor,” Opt. Fiber Technol. 52, 101981 (2019).
[Crossref]

Frazao, O.

S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photon. Technol. Lett. 25 , 401–403 (2013).
[Crossref]

Fricke, K.

E. Makhneva, L. Barillas, Z. Farka, M. Pastucha, P. Skládal, K.-D. Weltmann, and K. Fricke, “Functional plasma polymerized surfaces for biosensing,” ACS Appl. Mater. Interfaces 12, 17100–17112 (2020).
[Crossref]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15 , 1442–1463 (1997).
[Crossref]

C. G. Askins, M. A. Putnam, G. M. Williams, and E. J. Friebele, “Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower,” Opt. Lett. 19, 147–149 (1994).
[Crossref]

Fu, S.

Z. Zhao, Z. Liu, M. Tang, S. Fu, L. Wang, N. Guo, C. Jin, H. Y. Tam, and C. Lu, “Robust in-fiber spatial interferometer using multicore fiber for vibration detection,” Opt. Express 26, 29629–29637 (2018).
[Crossref]

R. Wang, M. Tang, S. Fu, Z. Feng, W. Tong, and D. Liu, “Spatially arrayed long period gratings in multicore fiber by programmable electrical arc discharge,” IEEE Photonics J. 9, 4500310 (2017).
[Crossref]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

Fu, Y.

Fuentes-Fuentes, M. A.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Gallant, B. M.

J. Huang, L. A. Blanquer, J. Bonefacino, E. R. Logan, D. A. D. Corte, C. Delacourt, B. M. Gallant, S. T. Boles, J. R. Dhan, H.-Y. Tam, and J.-M. Tarascon, “Operando decoding of chemical and thermal events in commercial Na (Li)-ion cells via optical sensors,” Nat. Energy 5 , 674–683 (2020).
[Crossref]

Gan, L.

Y. Li, H. Ma, L. Gan, Q. Liu, Z. Yan, D. Liu, and Q. Sun, “Immobilized optical fiber microprobe for selective and high sensitive glucose detection,” Sens. Actuators B 255, 3004–3010 (2018).
[Crossref]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

Gan, T.

K. J. Huang, Y. J. Liu, H. B. Wang, T. Gan, Y. M. Liu, and L. L. Wang, “Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide-graphene composites and gold nanoparticles,” Sens. Act. B 191, 828–836 (2014).
[Crossref]

Gang, T.

Ganguli, A.

A. Ganguli, B. Saha, A. Raghavan, P. Kiesel, K. Arakaki, A. Schuh, J. Schwartz, A. Hegyi, L. W. Sommer, A. Lochbaum, S. Sahu, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: internal cell signals and utility for state estimation,” J. Power Sources 341, 474–482 (2017).
[Crossref]

A. Raghavan, P. Kiesel, L. W. Sommer, J. Schwartz, A. Lochbaum, A. Hegyi, A. Schuh, K. Arakaki, B. Saha, A. Ganguli, K. H. Kim, C. Kim, H. J. Hah, S. kim, G.-O. Hwang, G.-C. Chung, B. Choi, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance,” J. Power Sources 341, 466–473 (2017).
[Crossref]

Ganziy, D.

Gao, F.

Gao, L.

L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. Sun, X. Dong, and Y. Hou, “Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection,” IEEE Photonics J. 4 , 2095–2104 (2012).
[Crossref]

Gao, R. X.

R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283, 3149–3152 (2010).
[Crossref]

Gao, S.

Gao, X.

X. Gao, T. Ning, C. Zhang, J. Xu, J. Zheng, H. Lin, J. Li, L. Pei, and H. You, “A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing,” Opt. Commun. 454, 124441 (2020).
[Crossref]

C. Zhang, T. Ning, J. Zheng, X. Gao, H. Lin, J. Li, L. Pei, and X. Wen, “Miniature optical fiber temperature sensor based on FMF-SCF structure,” Opt. Fiber Technol. 41, 217–221 (2018).
[Crossref]

Gao, Y.

Garcia-Olcina, R.

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” Photon. Technol. Lett. 19 , 966–968 (2007).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B 54, 3–15 (1999).
[Crossref]

Gaylord, T. K.

E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Light.Technol. 21 , 218–227 (2003).
[Crossref]

Geng, P.

Geng, Y.

Geng, Z.

George, D. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J 8, 1292–1298 (2008).
[Crossref]

Ghannoum, A. R.

A. R. Ghannoum, P. Nieva, A. Yu, and A. Khajepour, “Development of embedded fiber-optic evanescent wave sensors for optical characterization of graphite anodes in lithium-ion batteries,” ACS Appl. Mater. Interfaces 9 , 41284–41290 (2017).
[Crossref]

Giannetti, A.

F. Esposito, L. Sansone, A. Srivastava, F. Baldini, S. Campopiano, F. Chiavaioli, M. Giordano, A. Giannetti, and A. Iadicicco, “Long period grating in double cladding fiber coated with graphene oxide as high-performance optical platform for biosensing,” Biosens. Bioelectron. 172, 112747 (2021).
[Crossref]

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87, 12024–12031 (2015).
[Crossref]

Giordano, M.

F. Esposito, L. Sansone, A. Srivastava, F. Baldini, S. Campopiano, F. Chiavaioli, M. Giordano, A. Giannetti, and A. Iadicicco, “Long period grating in double cladding fiber coated with graphene oxide as high-performance optical platform for biosensing,” Biosens. Bioelectron. 172, 112747 (2021).
[Crossref]

F. Esposito, L. Sansone, C. Taddei, S. Campopiano, M. Giordano, and A. Iadicicco, “Ultrasensitive biosensor based on long period grating coated with polycarbonate-graphene oxide multilayer,” Sens. Act. B 274, 517–526 (2018).
[Crossref]

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref]

Giorgi, J. B.

D. J. Mandia, W. Zhou, M. J. Ward, H. Joress, J. J. Sims, J. B. Giorgi, J. Albert, and S. T. Barry, “The effect of ALD-grown Al2O3 on the refractive index sensitivity of CVD gold-coated optical fiber sensors,” Nanotechnology 26, 434002 (2015).
[Crossref]

Giraldi, M. T. R.

J. W. Costa, M. A. R. Franco, V. A. Serrão, C. M. B. Cordeiro, and M. T. R. Giraldi, “Macrobending SMS fiber-optic anemometer and flow sensor,” Opt. Fiber Technol. 52, 101981 (2019).
[Crossref]

Girardo, S.

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “Three-dimensional correlative single-cell imaging utilizing fluorescence and refractive index tomography,” J. Biophotonics 11 , 1–11 (2018).
[Crossref]

Glenn, W. H.

Glytsis, E. N.

E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Light.Technol. 21 , 218–227 (2003).
[Crossref]

E. Anemogiannis and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344–1351 (1992).
[Crossref]

Goebel, T. A.

T. A. Goebel, J. Nold, C. Hupel, S. Kuhn, N. Haarlammert, T. Schreiber, C. Matzdorf, T. O. Imogore, R. G. Krämer, D. Richter, A. Tünnermann, and S. Nolte, “Ultrashort pulse written fiber Bragg gratings as narrowband filters in multicore fibers,” Appl. Opt. 60 , 43–51 (2021).
[Crossref]

Goicoechea, J.

I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]

Golant, E. I.

Golant, K. M.

Gonthier, F.

González-León, K.

R. Delgado-Macuil, K. González-León, and G. Beltrán-Pérez, “Neuropsin (Opn5) detection in the brain tissue of a murine model using long period fiber grating (LPFG),” Opt. Laser Technol. 139, 1–9 (2021).
[Crossref]

González-Vila, Á

S. S. Cai, Á González-Vila, X. J. Zhang, T. Guo, and C. Caucheteur, “Palladium-coated plasmonic optical fiber gratings for hydrogen detection,” Opt. Lett. 44 , 4483–4486 (2019).
[Crossref]

M. Sypabekova, S. Korganbayev, Á González-Vila, C. Caucheteur, M. Shaimerdenova, T. Ayupova, A. Bekmurzayeva, L. Vangelista, and D. Tosi, “Functionalized etched tilted fiber Bragg grating aptasensor for label-free protein detection,” Biosens. Bioelectron. 146, 111765 (2019).
[Crossref]

T. Guo, Á González-vila, M. Loyez, and C. Caucheteur, “Plasmonic optical fiber grating immunosensing: a review,” Sensors 17, 1–19 (2017).
[Crossref]

Goormaghtigh, E.

Goos, P.

B. Peeters, S. Safdar, D. Daems, P. Goos, D. Spasic, and J. Lammertyn, “Solid-phase PCR-amplified DNAzyme activity for real-time FO-SPR detection of the MCR-2 gene,” Anal. Chem. 92 , 10783–10791 (2020).
[Crossref]

I. Antohe, K. Schouteden, P. Goos, F. Delport, D. Spasic, and J. Lammertyn, “Thermal annealing of gold coated fiber optic surfaces for improved plasmonic biosensing,” Sens. Actu. B 229, 678–685 (2016).
[Crossref]

Gordon, P. G.

D. J. Mandia, M. B. E. Griffiths, W. Zhou, P. G. Gordon, J. Albert, and S. T. Barry, “In situ deposition monitoring by a tilted fiber Bragg grating optical probe: probing nucleation in chemical vapour deposition of gold,” Phys. Procedia 46, 12–20 (2013).
[Crossref]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, A. Bialiayeu, Y. Zhang, P. G. Gordon, S. T. Barry, and J. Albert, “Polarization-dependent properties of the cladding modes of single mode fiber covered with gold nanoparticles,” Opt. Express 21, 245–255 (2013).
[Crossref]

Gouveia, C. A. J.

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors 7, 23 (2017).
[Crossref]

Grande, L.

S. Novais, M. Nascimento, L. Grande, M. F. Domingues, P. Antunes, N. Alberto, C. Leitao, R. Oliveira, S. Koch, G. T. Kim, S. Passerini, and J. Pinto, “Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors,” Sensors 16 , 1394 (2016).
[Crossref]

Grattan, K. T.

Gregersen, N.

A. V. Lavrinenko, J. Laegsgaard, N. Gregersen, F. Schmidt, and T. Søndergaard, Numerical Methods in Photonics (CRC Press, 2017).

Grey, C. P.

C. P. Grey and J. M. Tarascon, “Sustainability and in situ monitoring in battery development,” Nat. Mater. 16, 45–56 (2017).
[Crossref]

Griffiths, M. B. E.

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C 118, 670–678 (2014).
[Crossref]

D. J. Mandia, M. B. E. Griffiths, W. Zhou, P. G. Gordon, J. Albert, and S. T. Barry, “In situ deposition monitoring by a tilted fiber Bragg grating optical probe: probing nucleation in chemical vapour deposition of gold,” Phys. Procedia 46, 12–20 (2013).
[Crossref]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, A. Bialiayeu, Y. Zhang, P. G. Gordon, S. T. Barry, and J. Albert, “Polarization-dependent properties of the cladding modes of single mode fiber covered with gold nanoparticles,” Opt. Express 21, 245–255 (2013).
[Crossref]

Gris-Sanchez, I.

Groves, R. M.

L. Fazzi and R. M. Groves, “Demodulation of a tilted fibre Bragg grating transmission signal using α-shape modified Delaunay triangulation,” Measurement 166, 108197 (2020).
[Crossref]

Grüner-Nielsen, L.

L. Grüner-Nielsen, N. M. Mathew, and K. Rottwitt, “Characterization of few mode fibers and devices,” Opt. Fiber Technol. 52, 101972 (2019).
[Crossref]

Gu, B.

Gu, G.

S. Bandyopadhyay, L. shao, M. Smietana, C. Wang, J. Hu, G. Wang, W. He, G. Gu, and Y. Yang, “Employing higher order cladding modes of fiber Bragg grating for analysis of refractive index change in volume and at the surface,” IEEE Photonics J. 12, 7100313 (2020).
[Crossref]

Gu, Y.

Y. Zhang, F. Wang, S. Qian, Z. Liu, Q. Wang, Y. Gu, Z. Wu, Z. Jing, C. Sun, and W. Peng, “A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein,” Sensors 17, 2259 (2017).
[Crossref]

Guan, B.

Y. Yuan, T. Guo, X. Qiu, J. Tang, Y. Huang, L. Zhuang, S. Zhou, Z. Li, B. Guan, X. Zhang, and J. Albert, “Electrochemical surface plasmon resonance fiber-optic sensor: in-situ detection of electroactive biofilms,” Anal. Chem. 88, 7609–7616 (2016).
[Crossref]

Guan, B. O.

W. Hu, Y. Huang, C. Chen, Y. Liu, T. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sens. Act. B 264, 440–447 (2018).
[Crossref]

Z. Zhang, T. Guo, X. Zhang, J. Xu, W. Xie, M. Nie, Q. Wu, B. O. Guan, and J. Albert, “Plasmonic fiber-optic vector magnetometer,” Appl. Phys. Lett. 108 , 101105 (2016).
[Crossref]

Z. P. Yu, L. Jin, L. H. Chen, J. Li, Y. Ran, and B. O. Guan, “Microfiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 27 , 2575–2578 (2015).
[Crossref]

Guan, B.-O.

X. Chen, F. Du, T. Guo, J. Lao, X. Zhang, Z. Zhang, F. Liu, J. Li, C. Chen, and B.-O. Guan, “Liquid crystal-embedded tilted fiber grating electric field intensity sensor,” J. Lightwave Technol. 35 , 3347–3353 (2017).
[Crossref]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref]

Guan, C.

M. Yang, J. Yang, C. Guan, M. Wang, P. Geng, Y. Shen, J. Zhang, J. Shi, J. Yang, and L. Yuan, “Refractive index sensor based on etched eccentric core few-mode fiber dual-mode interferometer,” Opt. Express 27, 28104–28113 (2019).
[Crossref]

P. Li, P. Tian, C. Guan, Z. Zhu, Y. Li, J. Yang, J. Shi, and L. Yuan, “Heterogeneous double period array multicore fiber and its application in Bragg grating sensor,” IEEE Sens. J. 19, 6193–6196 (2019).
[Crossref]

Guck, J.

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “Three-dimensional correlative single-cell imaging utilizing fluorescence and refractive index tomography,” J. Biophotonics 11 , 1–11 (2018).
[Crossref]

Guiot, M.-C.

J. Desroches, M. Jermyn, M. Pinto, F. Picot, M.-A. Tremblay, S. Obaid, E. Marple, K. Urmey, D. Trudel, G. Soulez, M.-C. Guiot, B. C. Wilson, K. Petrecca, and F. Leblond, “A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy,” Sci. Rep. 8, 1792 (2018).
[Crossref]

Guo, D.

Guo, N.

Guo, T.

F. Liu, X. Zhang, K. Li, T. Guo, A. Ianoul, and J. Albert, “Discrimination of bulk and surface refractive index change in plasmonic sensors with narrow bandwidth resonance combs,” ACS Sens. 6, 3013–3023 (2021).
[Crossref]

L. Liu, X. Zhang, Q. Zhu, K. Li, Y. Lu, X. Zhou, and T. Guo, “Ultrasensitive detection of endocrine disruptors via superfine plasmonic spectral combs,” Light Sci. Appl. 10, 181 (2021).
[Crossref]

Z. Zhang, F. Liu, Q. Ma, L. Li, and T. Guo, “Vector magnetometer based on localized scattering between optical fiber spectral combs and magnetic nanoparticles,” J. Lightwave Technol. 39 , 6599–6605 (2021).
[Crossref]

R. Wang, Z. Li, X. Chen, N. Hu, Y. Xiao, K. Li, and T. Guo, “Mode Splitting in ITO-nanocoated tilted fiber Bragg gratings for vector twist measurement,” J. Lightwave Technol 39 , 4151–4157 (2021).
[Crossref]

S. S. Cai, F. Liu, R. L. Wang, Y. G. Xiao, K. W. Li, C. Caucheteur, and T. Guo, “Narrow bandwidth fiber-optic spectral combs for renewable hydrogen detection,” Sci. China Inf. Sci. 63 , 222401 (2020).
[Crossref]

F. Liu, X. Zhang, T. Guo, and J. Albert, “Optical detection of the percolation threshold of nanoscale silver coatings with optical fiber gratings,” APL Photonics 5, 076101 (2020).
[Crossref]

S. S. Cai, Á González-Vila, X. J. Zhang, T. Guo, and C. Caucheteur, “Palladium-coated plasmonic optical fiber gratings for hydrogen detection,” Opt. Lett. 44 , 4483–4486 (2019).
[Crossref]

J. Lao, L. Han, Z. Wu, X. Zhang, Y. Huang, Y. Tang, and T. Guo, “Gold nanoparticle-functionalized surface plasmon resonance optical fiber biosensor: in situ detection of thrombin with 1 nM detection limit,” J. Lightwave Technol. 37, 2748–2755 (2019).
[Crossref]

Y. Si, J. Lao, X. Zhang, Y. Liu, S. Cai, A. G. Vila, K. Li, Y. Huang, Y. Yuan, C. Caucheteur, and T. Guo, “Electrochemical plasmonic fiber-optic sensors for ultra-sensitive heavy metal detection,” J. Lightwave Technol. 37, 3495–3502 (2019).
[Crossref]

J. Lao, P. Sun, F. Liu, X. Zhang, C. Zhao, W. Mai, T. Guo, G. Xiao, and J. Albert, “In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage,” Light: Sci. Appl. 7, 1–12 (2018).
[Crossref]

W. Hu, Y. Huang, C. Chen, Y. Liu, T. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sens. Act. B 264, 440–447 (2018).
[Crossref]

X. Zhang, S. Cai, F. Liu, H. Chen, P. Yan, Y. Yuan, T. Guo, and J. Albert, “In situ determination of the complex permittivity of ultrathin H2-infused palladium coatings for plasmonic fiber optic sensors in the near infrared,” J. Mater. Chem. C 6, 5161–5170 (2018).
[Crossref]

T. Guo, Á González-vila, M. Loyez, and C. Caucheteur, “Plasmonic optical fiber grating immunosensing: a review,” Sensors 17, 1–19 (2017).
[Crossref]

X. Chen, F. Du, T. Guo, J. Lao, X. Zhang, Z. Zhang, F. Liu, J. Li, C. Chen, and B.-O. Guan, “Liquid crystal-embedded tilted fiber grating electric field intensity sensor,” J. Lightwave Technol. 35 , 3347–3353 (2017).
[Crossref]

Z. Zhang, T. Guo, X. Zhang, J. Xu, W. Xie, M. Nie, Q. Wu, B. O. Guan, and J. Albert, “Plasmonic fiber-optic vector magnetometer,” Appl. Phys. Lett. 108 , 101105 (2016).
[Crossref]

Y. Yuan, T. Guo, X. Qiu, J. Tang, Y. Huang, L. Zhuang, S. Zhou, Z. Li, B. Guan, X. Zhang, and J. Albert, “Electrochemical surface plasmon resonance fiber-optic sensor: in-situ detection of electroactive biofilms,” Anal. Chem. 88, 7609–7616 (2016).
[Crossref]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

Guo, Y.

Gupta, B. D.

R. Tabassum and B. D. Gupta, “Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium,” J. Opt. 18 , 015004 (2016).
[Crossref]

Gupta, B.D.

B.D. Gupta, A.M. Shrivastav, and S.P. Usha, Optical Sensors for Biomedical Diagnostics and Environmental Monitoring, 1st ed. (CRC Press , , 2017).

Gupta, R.

A. Baliyan, S. Sital, U. Tiwari, R. Gupta, and E. K. Sharma, “Long period fiber grating based sensor for the detection of triacylglycerides,” Biosens. Bioelectron. 79, 693–700 (2016).
[Crossref]

Guvenc Kilic, S.

S. Guvenc Kilic, Y. Zhu, Q. Sheng, M. Naci Inci, and M. Han, “Refractometer with etched chirped fiber Bragg grating Fabry–Perot interferometer in multicore fiber,” IEEE Photonics Technol. Lett. 31, 575–578 (2019).
[Crossref]

Guzmán-Cabrera, R.

J. R. Guzmán-Sepúlveda, R. Guzmán-Cabrera, and A. A. Castillo-Guzmán, “Optical sensing using fiber-optic multimode interference devices: a review of nonconventional sensing schemes,” Sensors 21, 1862 (2021).
[Crossref]

Guzman-Sepulveda, J. R.

Guzmán-Sepúlveda, J. R.

J. R. Guzmán-Sepúlveda, R. Guzmán-Cabrera, and A. A. Castillo-Guzmán, “Optical sensing using fiber-optic multimode interference devices: a review of nonconventional sensing schemes,” Sensors 21, 1862 (2021).
[Crossref]

Haarlammert, N.

T. A. Goebel, J. Nold, C. Hupel, S. Kuhn, N. Haarlammert, T. Schreiber, C. Matzdorf, T. O. Imogore, R. G. Krämer, D. Richter, A. Tünnermann, and S. Nolte, “Ultrashort pulse written fiber Bragg gratings as narrowband filters in multicore fibers,” Appl. Opt. 60 , 43–51 (2021).
[Crossref]

Hadžievski, L.

Hah, H. J.

A. Raghavan, P. Kiesel, L. W. Sommer, J. Schwartz, A. Lochbaum, A. Hegyi, A. Schuh, K. Arakaki, B. Saha, A. Ganguli, K. H. Kim, C. Kim, H. J. Hah, S. kim, G.-O. Hwang, G.-C. Chung, B. Choi, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance,” J. Power Sources 341, 466–473 (2017).
[Crossref]

Haiqing, L.

Hammer, M.

Han, L.

Han, M.

S. Guvenc Kilic, Y. Zhu, Q. Sheng, M. Naci Inci, and M. Han, “Refractometer with etched chirped fiber Bragg grating Fabry–Perot interferometer in multicore fiber,” IEEE Photonics Technol. Lett. 31, 575–578 (2019).
[Crossref]

Han, Y. G.

Harasim, D.

Harder, C.

J. Koppert, H. Jean-Ruel, D. O’Neill, C. Harder, W. Willmore, A. Ianoul, and J. Albert, “Self-heating tilted fiber Bragg grating device for melt curve analysis of solid-phase DNA hybridization and thermal cycling,” Anal. Bioanal. Chem. 411, 6813–6823 (2019).
[Crossref]

Harun, S. W.

N. A. M. Zainuddin, M. M. Ariannejad, P. T. Arasu, S. W. Harun, and R. Zakaria, “Investigation of cladding thicknesses on silver SPR based side-polished optical fiber refractive-index sensor,” Results Phys. 13, 102255 (2019).
[Crossref]

Hassan, E. M.

Hatta, A. M.

A. M. Hatta, H. E. Permana, H. Setijono, A. Kusumawardhani, and Sekartedjo, “Strain measurement based on SMS fiber structure sensor and OTDR,” Microw. Opt. Technol. Lett. 55, 2576–2578 (2013).
[Crossref]

A. M. Hatta, K. Indriawati, T. Bestariyan, T. Humada, and Sekartedjo, “SMS fiber structure for temperature measurement using an OTDR,” Photonic Sens. 3, 262–266 (2013).
[Crossref]

Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Bent SMS fibre structure for temperature measurement,” Electron. Lett. 46, 1129–1130 (2010).
[Crossref]

A. M. Hatta, Y. Semenova, G. Rajan, P. Wang, J. Zheng, and G. Farrell, “Analysis of temperature dependence for a ratiometric wavelength measurement system using SMS fiber structure based edge filters,” Opt. Commun. 283, 1291–1295 (2010).
[Crossref]

Hawkins, T.

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkins, P. Dragic, and J. Ballato, “Overview of high temperature fibre Bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibres,” J. Phys.: Photonics 1, 042001 (2019).
[Crossref]

He, W.

S. Bandyopadhyay, L. shao, M. Smietana, C. Wang, J. Hu, G. Wang, W. He, G. Gu, and Y. Yang, “Employing higher order cladding modes of fiber Bragg grating for analysis of refractive index change in volume and at the surface,” IEEE Photonics J. 12, 7100313 (2020).
[Crossref]

He, X.-D.

Q. Wu, Y. Qu, J. Liu, J. Yuan, S.-P. Wan, T. Wu, X.-D. He, B. Liub, D. Liuc, and Y. Ma, “Singlemode-multimode-singlemode fiber structures for sensing applications – a review,” IEEE Sens. J. 21 , 12734–12751 (2021).
[Crossref]

He, Z.

Z. He and Q. Liu, “Optical fiber distributed acoustic sensors: a review,” J. Lightwave Technol. 39 , 3671–3686 (2021).
[Crossref]

R. Wang, Z. Ren, D. Kong, B. Hu, and Z. He, “Highly sensitive label-free biosensor based on graphene-oxide functionalized micro-tapered long period fiber grating,” Opt. Mater. (Amst) 109, 110253 (2020).
[Crossref]

Hegyi, A.

A. Raghavan, P. Kiesel, L. W. Sommer, J. Schwartz, A. Lochbaum, A. Hegyi, A. Schuh, K. Arakaki, B. Saha, A. Ganguli, K. H. Kim, C. Kim, H. J. Hah, S. kim, G.-O. Hwang, G.-C. Chung, B. Choi, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance,” J. Power Sources 341, 466–473 (2017).
[Crossref]

A. Ganguli, B. Saha, A. Raghavan, P. Kiesel, K. Arakaki, A. Schuh, J. Schwartz, A. Hegyi, L. W. Sommer, A. Lochbaum, S. Sahu, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: internal cell signals and utility for state estimation,” J. Power Sources 341, 474–482 (2017).
[Crossref]

Henderson, G.

Hernaez, M.

I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]

I. Del Villar, C. R. Zamarreno, M. Hernaez, F. J. Arregui, and I. R. Matias, “Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications,” J. Lightwave Technol. 28, 111–117 (2010).
[Crossref]

D. Villar, C. R. Zamarreño, P. Sanchez, M. Hernaez, C. F. Valdivielso, F. J. Arregui, and I. R. Matias, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12, 095503 (2010).
[Crossref]

Hernández, J. N.

Hernández-Romano, I.

N. Cuando-Espitia, M. A. Fuentes-Fuentes, D. A. May-Arrioja, I. Hernández-Romano, R. Martínez-Manuel, and M. Torres-Cisneros, “Dual-point refractive index measurements using coupled seven-core fibers,” J. Lightwave Technol. 39, 310–319 (2021).
[Crossref]

I. Hernández-Romano, D. Monzón-Hernández, C. Moreno-Hernández, D. Moreno-Hernandez, and J. Villatoro, “Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer,” IEEE Photonics Techn. Lett. 27, 2591–2594 (2015).
[Crossref]

Hill, K.

K. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270–1272 (1990).
[Crossref]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Hiscock, T. W.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Hockemeyer, D.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Hoekstra, H. J. W. M.

Holdynski, Z.

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B 54, 3–15 (1999).
[Crossref]

Horche, P. R.

P. R. Horche, M. López-Amo, M. A. Muriel, and J. A. Martin-Pereda, “Spectral behavior of a low-cost all-fiber component based on untapered multifiber unions,” IEEE Photonics Technol. Lett. 1, 184–187 (1989).
[Crossref]

Hosoki, A.

Hossain, S.

A. M. Abdalla, S. Hossain, O. B. Nisfindy, A. T. Azad, M. Dawood, and A. K. Azad, “Hydrogen production, storage, transportation and key challenges with applications: a review,” Energy Convers. Manage. 165, 602–627 (2018).
[Crossref]

Hosseini, S. E.

S. E. Hosseini and M. A. Wahid, “Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development,” Renew. Sustain. Energy Rev. 57, 850–866 (2016).
[Crossref]

Hou, Y.

D. Feng, J. Albert, Y. Hou, B. Jiang, Y. Jiang, Y. Ma, and J. Zhao, “Co-located angularly offset fiber Bragg grating pair for temperature-compensated unambiguous 3D shape sensing,” Appl. Opt. 60 , 4185–4189 (2021).
[Crossref]

L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. Sun, X. Dong, and Y. Hou, “Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection,” IEEE Photonics J. 4 , 2095–2104 (2012).
[Crossref]

Howden, R. I.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J 8, 1292–1298 (2008).
[Crossref]

Hu, B.

R. Wang, Z. Ren, D. Kong, B. Hu, and Z. He, “Highly sensitive label-free biosensor based on graphene-oxide functionalized micro-tapered long period fiber grating,” Opt. Mater. (Amst) 109, 110253 (2020).
[Crossref]

Hu, J.

S. Bandyopadhyay, L. shao, M. Smietana, C. Wang, J. Hu, G. Wang, W. He, G. Gu, and Y. Yang, “Employing higher order cladding modes of fiber Bragg grating for analysis of refractive index change in volume and at the surface,” IEEE Photonics J. 12, 7100313 (2020).
[Crossref]

Hu, M.

Hu, N.

R. Wang, Z. Li, X. Chen, N. Hu, Y. Xiao, K. Li, and T. Guo, “Mode Splitting in ITO-nanocoated tilted fiber Bragg gratings for vector twist measurement,” J. Lightwave Technol 39 , 4151–4157 (2021).
[Crossref]

Hu, W.

D. Guo, L. Wu, H. Yu, A. Zhou, Q. Li, F. Mumtaz, C. Du, and W. Hu, “Tapered multicore fiber interferometer for refractive index sensing with graphene enhancement,” Appl. Opt. 59, 3927–3932 (2020).
[Crossref]

W. Hu, C. Li, S. Cheng, F. Mumtaz, C. Du, and M. Yang, “Etched multicore fiber Bragg gratings for refractive index sensing with temperature in-line compensation,” OSA Continuum 3 , 1058–1067 (2020).
[Crossref]

F. Mumtaz, P. Cheng, C. Li, S. Cheng, C. Du, M. Yang, Y. Dai, and W. Hu, “A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer,” IEEE Sens. J. 20, 7074–7081 (2020).
[Crossref]

W. Hu, Y. Huang, C. Chen, Y. Liu, T. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sens. Act. B 264, 440–447 (2018).
[Crossref]

Hu, Y.

Huang, J.

C. Zhu, D. Alla, and J. Huang, “High-temperature stable FBGs fabricated by a point-by-point femtosecond laser inscription for multi-parameter sensing,” OSA Continuum 4, 355–363 (2021).
[Crossref]

J. Huang, L. A. Blanquer, J. Bonefacino, E. R. Logan, D. A. D. Corte, C. Delacourt, B. M. Gallant, S. T. Boles, J. R. Dhan, H.-Y. Tam, and J.-M. Tarascon, “Operando decoding of chemical and thermal events in commercial Na (Li)-ion cells via optical sensors,” Nat. Energy 5 , 674–683 (2020).
[Crossref]

F. Tang, Z. Li, Y. Chen, H. N. Li, J. Huang, and M. J. O’Keefe, “Monitoring passive film growth on steel using Fe-C coated long period grating fiber sensor,” IEEE Sens. J. 19, 6748–6755 (2019).
[Crossref]

J. Yang, L. Zhou, J. Huang, C. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Act B 207, 477–480 (2015).
[Crossref]

Huang, K. J.

K. J. Huang, Y. J. Liu, H. B. Wang, T. Gan, Y. M. Liu, and L. L. Wang, “Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide-graphene composites and gold nanoparticles,” Sens. Act. B 191, 828–836 (2014).
[Crossref]

Huang, S.-Y.

Huang, T.

Huang, W.-P.

Huang, Y.

Y. Yu, X. Zhang, K. Wang, Z. Wang, H. Sun, Y. Yang, C. Deng, Y. Huang, and T. Wang, “Coexistence of transmission mechanisms for independent multi-parameter sensing in a silica capillary-based cascaded structure,” Opt. Express 29, 27938–27950 (2021)..
[Crossref]

J. Lao, L. Han, Z. Wu, X. Zhang, Y. Huang, Y. Tang, and T. Guo, “Gold nanoparticle-functionalized surface plasmon resonance optical fiber biosensor: in situ detection of thrombin with 1 nM detection limit,” J. Lightwave Technol. 37, 2748–2755 (2019).
[Crossref]

Y. Si, J. Lao, X. Zhang, Y. Liu, S. Cai, A. G. Vila, K. Li, Y. Huang, Y. Yuan, C. Caucheteur, and T. Guo, “Electrochemical plasmonic fiber-optic sensors for ultra-sensitive heavy metal detection,” J. Lightwave Technol. 37, 3495–3502 (2019).
[Crossref]

W. Hu, Y. Huang, C. Chen, Y. Liu, T. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sens. Act. B 264, 440–447 (2018).
[Crossref]

Y. Yuan, T. Guo, X. Qiu, J. Tang, Y. Huang, L. Zhuang, S. Zhou, Z. Li, B. Guan, X. Zhang, and J. Albert, “Electrochemical surface plasmon resonance fiber-optic sensor: in-situ detection of electroactive biofilms,” Anal. Chem. 88, 7609–7616 (2016).
[Crossref]

Huang, Z.

C. Wang, C. Pan, J. Xu, Z. Yang, J. Zhao, and Z. Huang, “Analysis of misalignment, twist, and bend in few-mode fibers using spatially and spectrally resolved imaging,” Opt. Fiber Technol. 56, 102205 (2020).
[Crossref]

Hübert, T.

T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors - a review,” Sens. Act. B 157 , 329–352 (2011).
[Crossref]

Hui, D.

Y. Chunxia, D. Hui, D. Wei, and X. Chaowei, “Weakly-coupled multicore optical fiber taper-based high-temperature sensor,” Sens. Actuators A 280, 139–144 (2018).
[Crossref]

Humada, T.

A. M. Hatta, K. Indriawati, T. Bestariyan, T. Humada, and Sekartedjo, “SMS fiber structure for temperature measurement using an OTDR,” Photonic Sens. 3, 262–266 (2013).
[Crossref]

Hupel, C.

T. A. Goebel, J. Nold, C. Hupel, S. Kuhn, N. Haarlammert, T. Schreiber, C. Matzdorf, T. O. Imogore, R. G. Krämer, D. Richter, A. Tünnermann, and S. Nolte, “Ultrashort pulse written fiber Bragg gratings as narrowband filters in multicore fibers,” Appl. Opt. 60 , 43–51 (2021).
[Crossref]

Hwang, G.-O.

A. Raghavan, P. Kiesel, L. W. Sommer, J. Schwartz, A. Lochbaum, A. Hegyi, A. Schuh, K. Arakaki, B. Saha, A. Ganguli, K. H. Kim, C. Kim, H. J. Hah, S. kim, G.-O. Hwang, G.-C. Chung, B. Choi, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance,” J. Power Sources 341, 466–473 (2017).
[Crossref]

Hwang, J.

A. D. D. Le, J. Hwang, M. Yusuf, K. H. Park, S. Park, and J. Kim, “Simultaneous measurement of humidity and temperature with CYTOP-reduced graphene oxide-overlaid two-mode optical fiber sensor,” Sens. Actuators B 298, 126841 (2019).
[Crossref]

Iadicicco, A.

F. Esposito, L. Sansone, A. Srivastava, F. Baldini, S. Campopiano, F. Chiavaioli, M. Giordano, A. Giannetti, and A. Iadicicco, “Long period grating in double cladding fiber coated with graphene oxide as high-performance optical platform for biosensing,” Biosens. Bioelectron. 172, 112747 (2021).
[Crossref]

F. Esposito, L. Sansone, C. Taddei, S. Campopiano, M. Giordano, and A. Iadicicco, “Ultrasensitive biosensor based on long period grating coated with polycarbonate-graphene oxide multilayer,” Sens. Act. B 274, 517–526 (2018).
[Crossref]

Ianoul, A.

F. Liu, X. Zhang, K. Li, T. Guo, A. Ianoul, and J. Albert, “Discrimination of bulk and surface refractive index change in plasmonic sensors with narrow bandwidth resonance combs,” ACS Sens. 6, 3013–3023 (2021).
[Crossref]

J. Koppert, H. Jean-Ruel, D. O’Neill, C. Harder, W. Willmore, A. Ianoul, and J. Albert, “Self-heating tilted fiber Bragg grating device for melt curve analysis of solid-phase DNA hybridization and thermal cycling,” Anal. Bioanal. Chem. 411, 6813–6823 (2019).
[Crossref]

S. Lépinay, A. Ianoul, and J. Albert, “Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules,” Talanta 128, 401–407 (2014).
[Crossref]

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanowire coatings on optical fibers,” J. Phys. Chem. C 118, 11035–11042 (2014).
[Crossref]

S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52, 337–344 (2014).
[Crossref]

A. Bialiayeu, A. Bottomley, D. Prezgot, A. Ianoul, and J. Albert, “Plasmon-enhanced refractometry using silver nanowire coating on tilted fiber Bragg gratings,” Nanotechnology 23, 444012 (2012).
[Crossref]

A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, “Self-optimized metal coating for fiber plasmonics by electroless deposition,” Opt. Express 19, 18742–18753 (2011).
[Crossref]

Ibrahim, M.

A. Azmi, A. Abdullah, M. M. Noor, M. Ibrahim, R. R. Ibrahim, T. Tan, and J. Zhang, “Dynamic bending and rotation sensing based on high coherence interferometry in multicore fiber,” Opt. Laser Technol. 135, 106716 (2021).
[Crossref]

Ibrahim, R. R.

A. Azmi, A. Abdullah, M. M. Noor, M. Ibrahim, R. R. Ibrahim, T. Tan, and J. Zhang, “Dynamic bending and rotation sensing based on high coherence interferometry in multicore fiber,” Opt. Laser Technol. 135, 106716 (2021).
[Crossref]

Igawa, H.

Imogore, T. O.

T. A. Goebel, J. Nold, C. Hupel, S. Kuhn, N. Haarlammert, T. Schreiber, C. Matzdorf, T. O. Imogore, R. G. Krämer, D. Richter, A. Tünnermann, and S. Nolte, “Ultrashort pulse written fiber Bragg gratings as narrowband filters in multicore fibers,” Appl. Opt. 60 , 43–51 (2021).
[Crossref]

Indriawati, K.

A. M. Hatta, K. Indriawati, T. Bestariyan, T. Humada, and Sekartedjo, “SMS fiber structure for temperature measurement using an OTDR,” Photonic Sens. 3, 262–266 (2013).
[Crossref]

Ioannou, A.

Ivanov, A.

A. Ivanov, “Multi-parameter fiber optic sensors for structural health monitoring,” M.A.Sc. thesis (Carleton University, 2008).

Jacobs, S. A.

Jakobi, M.

K. Wang, X. Dong, M. H. Köhler, P. Kienle, Q. Bian, M. Jakobi, and A. W. Koch, “Advances in optical fiber sensors based on multimode interference (MMI): a review,” IEEE Sens. J. 21, 132–142 (2020).
[Crossref]

James, S. W.

S. Korposh, S. W. James, S.-W. Lee, and R. P. Tatam, “Tapered optical fibre sensors: current trends and future perspectives,” Sensors 19, 2294 (2019).
[Crossref]

T. Kissinger, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Dynamic fiber-optic shape sensing using fiber segment interferometry,” J. Lightwave Technol. 36, 917–925 (2018).
[Crossref]

Jana, S.

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87, 12024–12031 (2015).
[Crossref]

Janczuk-Richter, M.

M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Act. B 250, 32–38 (2017).
[Crossref]

Janik, M.

Janner, D.

Jarad, N. A.

A. Shakeri, N. A. Jarad, A. Leung, L. Soleymani, and T. F. Didar, “Biofunctionalization of glass- and paper-based microfluidic devices: a review,” Adv. Mater. Interfaces 6, 1–16 (2019).
[Crossref]

Javahiraly, N.

Jean-Ruel, H.

J. Koppert, H. Jean-Ruel, D. O’Neill, C. Harder, W. Willmore, A. Ianoul, and J. Albert, “Self-heating tilted fiber Bragg grating device for melt curve analysis of solid-phase DNA hybridization and thermal cycling,” Anal. Bioanal. Chem. 411, 6813–6823 (2019).
[Crossref]

Jedrzejewski, K.

T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous measurement of liquid level and temperature using tilted fiber Bragg grating,” IEEE Sens. J. 16, 1205–1209 (2016).
[Crossref]

Jermyn, M.

J. Desroches, M. Jermyn, M. Pinto, F. Picot, M.-A. Tremblay, S. Obaid, E. Marple, K. Urmey, D. Trudel, G. Soulez, M.-C. Guiot, B. C. Wilson, K. Petrecca, and F. Leblond, “A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy,” Sci. Rep. 8, 1792 (2018).
[Crossref]

Ji, W.

F. Wang, Y. Zhang, M. Lu, Y. Du, M. Chen, S. Meng, W. Ji, C. Sun, and W. Peng, “Near-infrared band gold nanoparticles-Au film “hot spot” model based label-free ultratrace lead (II) ions detection via fiber SPR DNAzyme biosensor,” Sens. Act. B 337, 129816 (2021).
[Crossref]

Jia, S.

J. Peng, X. Zhou, S. Jia, Y. Jin, S. Xu, and J. Chen, “High precision strain monitoring for lithium ion batteries based on fiber Bragg grating sensors,” J. Power Sources 443, 226692 (2019).
[Crossref]

Jian, S.

W. Jin, Y. Xu, Y. Jiang, Y. Wu, S. Yao, S. Xiao, Y. Qi, W. Ren, and S. Jian, “Strain and temperature characteristics of the LP11 mode based on a few-mode fiber Bragg grating and core-offset splicing,” Laser Phys. 28 , 025103 (2018).
[Crossref]

Y. Xu, G. Ren, Y. Jiang, Y. Gao, H. Li, W. Jin, Y. Wu, Y. Shen, and S. Jian, “Bending effect characterization of individual higher-order modes in few-mode fibers,” Opt. Lett. 42, 3343–3346 (2017).
[Crossref]

Jian, S.-S.

Jiang, B.

Jiang, J.

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators B 238, 518–524 (2017).
[Crossref]

J. Yin, P. Yan, H. Chen, L. Yu, J. Jiang, M. Zhang, and S. Ruan, “All-fiber-optic vector magnetometer based on anisotropic magnetism-manipulation of ferromagnetism nanoparticles,” Appl. Phys. Lett. 110 , 231104 (2017).
[Crossref]

Jiang, P.

B. Luo, Y. Xu, S. Wu, M. Zhao, P. Jiang, S. Shi, Z. Zhang, Y. Wang, L. Wang, and Y. Liu, “A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus,” Biosens. Bioelectron. 100, 169–175 (2018).
[Crossref]

Jiang, X.

Z. Luo, H. Yu, Y. Zheng, Z. Zheng, Y. Li, and X. Jiang, “Selective mode excitation in a few-mode photonic crystal fiber for strain sensing with restrained temperature response,” J. Lightwave Technol. 38, 4560–4571 (2020).
[Crossref]

G. Yang, C. Leitão, Y. Li, J. Pinto, and X. Jiang, “Real-time temperature measurement with fiber Bragg sensors in lithium batteries for safety usage,” Measurement 46 , 3166–3172 (2013).
[Crossref]

Jiang, Y.

Jiang, Z.

Jianjun, W.

Jin, C.

Jin, J.

J. Jin, Y. Zhang, Y. Zhu, D. Zhang, and H. Zhang, “Analysis and correction method of axial strain error in multi-core fiber shape sensing,” IEEE Sensors J. 20, 12716–12722 (2020).
[Crossref]

Jin, L.

Z. P. Yu, L. Jin, L. H. Chen, J. Li, Y. Ran, and B. O. Guan, “Microfiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 27 , 2575–2578 (2015).
[Crossref]

Jin, W.

W. Jin, Y. Xu, Y. Jiang, Y. Wu, S. Yao, S. Xiao, Y. Qi, W. Ren, and S. Jian, “Strain and temperature characteristics of the LP11 mode based on a few-mode fiber Bragg grating and core-offset splicing,” Laser Phys. 28 , 025103 (2018).
[Crossref]

Y. Xu, G. Ren, Y. Jiang, Y. Gao, H. Li, W. Jin, Y. Wu, Y. Shen, and S. Jian, “Bending effect characterization of individual higher-order modes in few-mode fibers,” Opt. Lett. 42, 3343–3346 (2017).
[Crossref]

Y. H. Yang, F. L. Yang, H. Wang, W. Yang, and W. Jin, “Temperature-insensitive hydrogen sensor with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” J. Light. Technol 33 , 2566–2571 (2015).
[Crossref]

Jin, Y.

J. Peng, X. Zhou, S. Jia, Y. Jin, S. Xu, and J. Chen, “High precision strain monitoring for lithium ion batteries based on fiber Bragg grating sensors,” J. Power Sources 443, 226692 (2019).
[Crossref]

Jing, X.

M. Ma, H. Chen, S. Li, X. Jing, W. Zhang, and M. Wang, “Analysis of a magnetic field sensor based on a Sagnac interferometer using a magnetic fluid-filled birefringent photonic crystal fiber,” IEEE Photonics J. 11 , 1–10 (2019).
[Crossref]

Jing, Z.

Y. Zhang, F. Wang, S. Qian, Z. Liu, Q. Wang, Y. Gu, Z. Wu, Z. Jing, C. Sun, and W. Peng, “A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein,” Sensors 17, 2259 (2017).
[Crossref]

Jingang, P.

Jinyan, L.

Jo, S.-H.

H. E. Joe, H. Yun, S.-H. Jo, M. B. G. Jun, and B. K. Min, “A review on optical fiber sensors for environmental monitoring,” Int. J. Precis. Eng. Manuf. Technol. 5 , 173–191 (2018).
[Crossref]

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed., Chap. 9 (Princeton U. Press, 2008) ISBN:9780691124568

Joe, H. E.

H. E. Joe, H. Yun, S.-H. Jo, M. B. G. Jun, and B. K. Min, “A review on optical fiber sensors for environmental monitoring,” Int. J. Precis. Eng. Manuf. Technol. 5 , 173–191 (2018).
[Crossref]

Johnson, D. C.

K. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270–1272 (1990).
[Crossref]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Johnson, I. P.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47, 271–272 (2011).
[Crossref]

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed., Chap. 9 (Princeton U. Press, 2008) ISBN:9780691124568

Jones, B. J. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J 8, 1292–1298 (2008).
[Crossref]

Joress, H.

D. J. Mandia, W. Zhou, M. J. Ward, H. Joress, J. J. Sims, J. B. Giorgi, J. Albert, and S. T. Barry, “The effect of ALD-grown Al2O3 on the refractive index sensitivity of CVD gold-coated optical fiber sensors,” Nanotechnology 26, 434002 (2015).
[Crossref]

Jorge, P. A. S.

J. M. M. M. de Almeida, H. Vasconcelos, P. A. S. Jorge, and L. Coelho, “Plasmonic optical fiber sensor based on double step growth of gold nano-islands,” Sensors 18 , 1–13 (2018).
[Crossref]

F. Chiavaioli, C. A. J. Gouveia, P. A. S. Jorge, and F. Baldini, “Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors,” Biosensors 7, 23 (2017).
[Crossref]

Jovanovic, N.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bahtia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Jun, M. B. G.

H. E. Joe, H. Yun, S.-H. Jo, M. B. G. Jun, and B. K. Min, “A review on optical fiber sensors for environmental monitoring,” Int. J. Precis. Eng. Manuf. Technol. 5 , 173–191 (2018).
[Crossref]

Jung, Y.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129 (2006).
[Crossref]

Jurek, T.

T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous measurement of liquid level and temperature using tilted fiber Bragg grating,” IEEE Sens. J. 16, 1205–1209 (2016).
[Crossref]

Kalli, K.

Kasai, N. Y.

J. Nakayama, N. Y. Kasai, T. Shibutani, and A. Miyake, “Security risk analysis of a hydrogen fueling station with an on-site hydrogen production system involving methylcyclohexane,” Int. J. Hydrogen Energy 44 , 9110–9119 (2018).
[Crossref]

Kavungal, V.

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Kazemi, A.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B 60, 27–34 (1999).
[Crossref]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15 , 1442–1463 (1997).
[Crossref]

Khademhosseini, A.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56, 359–367 (2014).
[Crossref]

Khajepour, A.

A. R. Ghannoum, P. Nieva, A. Yu, and A. Khajepour, “Development of embedded fiber-optic evanescent wave sensors for optical characterization of graphite anodes in lithium-ion batteries,” ACS Appl. Mater. Interfaces 9 , 41284–41290 (2017).
[Crossref]

Khan, F.

F. Khan, A. Denasi, D. Barrera, J. Madrigal, S. Sales, and S. Misra, “Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments,” IEEE Sens. J. 19, 5878–5884 (2019).
[Crossref]

Khan, L.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47, 271–272 (2011).
[Crossref]

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40 , 1170–1172 (2004).
[Crossref]

Kienle, P.

K. Wang, X. Dong, M. H. Köhler, P. Kienle, Q. Bian, M. Jakobi, and A. W. Koch, “Advances in optical fiber sensors based on multimode interference (MMI): a review,” IEEE Sens. J. 21, 132–142 (2020).
[Crossref]

Kiesel, P.

A. Ganguli, B. Saha, A. Raghavan, P. Kiesel, K. Arakaki, A. Schuh, J. Schwartz, A. Hegyi, L. W. Sommer, A. Lochbaum, S. Sahu, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: internal cell signals and utility for state estimation,” J. Power Sources 341, 474–482 (2017).
[Crossref]

A. Raghavan, P. Kiesel, L. W. Sommer, J. Schwartz, A. Lochbaum, A. Hegyi, A. Schuh, K. Arakaki, B. Saha, A. Ganguli, K. H. Kim, C. Kim, H. J. Hah, S. kim, G.-O. Hwang, G.-C. Chung, B. Choi, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance,” J. Power Sources 341, 466–473 (2017).
[Crossref]

Kim, B. Y.

Kim, C.

A. Raghavan, P. Kiesel, L. W. Sommer, J. Schwartz, A. Lochbaum, A. Hegyi, A. Schuh, K. Arakaki, B. Saha, A. Ganguli, K. H. Kim, C. Kim, H. J. Hah, S. kim, G.-O. Hwang, G.-C. Chung, B. Choi, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance,” J. Power Sources 341, 466–473 (2017).
[Crossref]

Kim, G. T.

S. Novais, M. Nascimento, L. Grande, M. F. Domingues, P. Antunes, N. Alberto, C. Leitao, R. Oliveira, S. Koch, G. T. Kim, S. Passerini, and J. Pinto, “Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors,” Sensors 16 , 1394 (2016).
[Crossref]

Kim, J.

A. D. D. Le, J. Hwang, M. Yusuf, K. H. Park, S. Park, and J. Kim, “Simultaneous measurement of humidity and temperature with CYTOP-reduced graphene oxide-overlaid two-mode optical fiber sensor,” Sens. Actuators B 298, 126841 (2019).
[Crossref]

Kim, J. K.

M. L. Sham, J. Li, P. C. Ma, and J. K. Kim, “Cleaning and functionalization of polymer surfaces and nanoscale carbon fillers by UV/ozone treatment: a review,” J. Compos. Mater. 43, 1537–1564 (2009).
[Crossref]

Kim, K. H.

A. Raghavan, P. Kiesel, L. W. Sommer, J. Schwartz, A. Lochbaum, A. Hegyi, A. Schuh, K. Arakaki, B. Saha, A. Ganguli, K. H. Kim, C. Kim, H. J. Hah, S. kim, G.-O. Hwang, G.-C. Chung, B. Choi, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance,” J. Power Sources 341, 466–473 (2017).
[Crossref]

kim, S.

A. Raghavan, P. Kiesel, L. W. Sommer, J. Schwartz, A. Lochbaum, A. Hegyi, A. Schuh, K. Arakaki, B. Saha, A. Ganguli, K. H. Kim, C. Kim, H. J. Hah, S. kim, G.-O. Hwang, G.-C. Chung, B. Choi, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance,” J. Power Sources 341, 466–473 (2017).
[Crossref]

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129 (2006).
[Crossref]

Kirchhausen, T.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Kisala, P.

Kissinger, T.

Ko, W.

Koba, M.

M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Act. B 250, 32–38 (2017).
[Crossref]

Kobelke, J.

Koch, A. W.

K. Wang, X. Dong, M. H. Köhler, P. Kienle, Q. Bian, M. Jakobi, and A. W. Koch, “Advances in optical fiber sensors based on multimode interference (MMI): a review,” IEEE Sens. J. 21, 132–142 (2020).
[Crossref]

Koch, S.

M. Nascimento, S. Movais, M. Ding, M. S. Ferreira, S. Koch, S. Passerini, and J. Pinto, “Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries,” J. Power Sources 410, 1–9 (2019).
[Crossref]

S. Novais, M. Nascimento, L. Grande, M. F. Domingues, P. Antunes, N. Alberto, C. Leitao, R. Oliveira, S. Koch, G. T. Kim, S. Passerini, and J. Pinto, “Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors,” Sensors 16 , 1394 (2016).
[Crossref]

Kofler, J. D.

S. D. Dyer, P. A. Williams, R. J. Espejo, J. D. Kofler, and S. M. Etzel, “Fundamental limits in fiber Bragg grating peak wavelength measurements (invited paper),” Proc. SPIE 5855, 88–93 (2005).
[Crossref]

Köhler, M. H.

K. Wang, X. Dong, M. H. Köhler, P. Kienle, Q. Bian, M. Jakobi, and A. W. Koch, “Advances in optical fiber sensors based on multimode interference (MMI): a review,” IEEE Sens. J. 21, 132–142 (2020).
[Crossref]

Kohrman, A. Q.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Komodromos, M.

Kong, D.

R. Wang, Z. Ren, D. Kong, B. Hu, and Z. He, “Highly sensitive label-free biosensor based on graphene-oxide functionalized micro-tapered long period fiber grating,” Opt. Mater. (Amst) 109, 110253 (2020).
[Crossref]

Kong, L.-X.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15 , 1442–1463 (1997).
[Crossref]

Koppert, J.

J. Koppert, H. Jean-Ruel, D. O’Neill, C. Harder, W. Willmore, A. Ianoul, and J. Albert, “Self-heating tilted fiber Bragg grating device for melt curve analysis of solid-phase DNA hybridization and thermal cycling,” Anal. Bioanal. Chem. 411, 6813–6823 (2019).
[Crossref]

Korganbayev, S.

D. Paloschi, K. A. Bronnikov, S. Korganbayev, A. A. Wolf, A. Dostovalov, and P. Saccomandi, “3D shape sensing with multicore optical fibers: transformation matrices versus Frenet-Serret equations for real-time application,” IEEE Sens. J. 21, 4599–4609 (2021).
[Crossref]

M. Sypabekova, S. Korganbayev, Á González-Vila, C. Caucheteur, M. Shaimerdenova, T. Ayupova, A. Bekmurzayeva, L. Vangelista, and D. Tosi, “Functionalized etched tilted fiber Bragg grating aptasensor for label-free protein detection,” Biosens. Bioelectron. 146, 111765 (2019).
[Crossref]

Korposh, S.

S. Korposh, S. W. James, S.-W. Lee, and R. P. Tatam, “Tapered optical fibre sensors: current trends and future perspectives,” Sensors 19, 2294 (2019).
[Crossref]

L. L. Liu, L. Marques, R. Correia, S. P. Morgan, S. W. Lee, P. Tighe, L. Fairclough, and S. Korposh, “Highly sensitive label-free antibody detection using a long period fibre grating sensor,” Sens. Act. B 271, 24–32 (2018).
[Crossref]

Koutsides, C.

Koyama, M.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Krämer, R. G.

T. A. Goebel, J. Nold, C. Hupel, S. Kuhn, N. Haarlammert, T. Schreiber, C. Matzdorf, T. O. Imogore, R. G. Krämer, D. Richter, A. Tünnermann, and S. Nolte, “Ultrashort pulse written fiber Bragg gratings as narrowband filters in multicore fibers,” Appl. Opt. 60 , 43–51 (2021).
[Crossref]

J. U. Thomas, N. Jovanovic, R. G. Krämer, G. D. Marshall, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings II: complete vectorial analysis,” Opt. Express 20 , 21434–21449 (2012).
[Crossref]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal clusters, Vol. 25 of Springer Series in Materials Science (Springer, 1995)

Kremp, T.

Krohn, D. A.

D. A. Krohn, T. W. MacDougal, and A. Mendez, Fiber Optic Sensors: Fundamentals and Applications, 4th ed. (SPIE Digital Library, 2015).
[Crossref]

Kryukov, P. G.

Kuhn, S.

T. A. Goebel, J. Nold, C. Hupel, S. Kuhn, N. Haarlammert, T. Schreiber, C. Matzdorf, T. O. Imogore, R. G. Krämer, D. Richter, A. Tünnermann, and S. Nolte, “Ultrashort pulse written fiber Bragg gratings as narrowband filters in multicore fibers,” Appl. Opt. 60 , 43–51 (2021).
[Crossref]

Kuklinska, M.

Kumar, A.

M. Kumar, A. Kumar, and S. M. Tripathi, “A comparison of temperature sensing characteristics of SMS structures using step and graded index multimode fibers,” Opt. Commun. 312, 222–226 (2014).
[Crossref]

A. Kumar, R. K. Varshney, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
[Crossref]

Kumar, M.

M. Kumar, A. Kumar, and S. M. Tripathi, “A comparison of temperature sensing characteristics of SMS structures using step and graded index multimode fibers,” Opt. Commun. 312, 222–226 (2014).
[Crossref]

Kusumawardhani, A.

A. M. Hatta, H. E. Permana, H. Setijono, A. Kusumawardhani, and Sekartedjo, “Strain measurement based on SMS fiber structure sensor and OTDR,” Microw. Opt. Technol. Lett. 55, 2576–2578 (2013).
[Crossref]

Lacraz, A.

Lacroix, S.

Laczkowski, R.

Laegsgaard, J.

A. V. Lavrinenko, J. Laegsgaard, N. Gregersen, F. Schmidt, and T. Søndergaard, Numerical Methods in Photonics (CRC Press, 2017).

Lahem, D.

M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
[Crossref]

C. Caucheteur, M. Debliquy, D. Lahem, and P. Mégret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16, 16854–16859 (2008).
[Crossref]

Lalam, N.

P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: review and perspective,” Appl. Phys. Rev. 6, 041302 (2019).
[Crossref]

Lambert, P.

M. Loyez, J. Larrieu, S. Chevineau, M. Remmelink, D. Leduc, B. Bondue, P. Lambert, J. Devière, R. Wattiez, and C. Caucheteur, “In situ cancer diagnosis through online plasmonics,” Biosens. Bioelectron. 131, 104–112 (2019).
[Crossref]

C. Ribaut, M. Loyez, J. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref]

Lammertyn, J.

B. Peeters, S. Safdar, D. Daems, P. Goos, D. Spasic, and J. Lammertyn, “Solid-phase PCR-amplified DNAzyme activity for real-time FO-SPR detection of the MCR-2 gene,” Anal. Chem. 92 , 10783–10791 (2020).
[Crossref]

D. Daems, B. Peeters, F. Delport, T. Remans, J. Lammertyn, and D. Spasic, “Identification and quantification of celery allergens using fiber optic surface plasmon resonance PCR,” Sensors 17 , 1754 (2017).
[Crossref]

I. Antohe, K. Schouteden, P. Goos, F. Delport, D. Spasic, and J. Lammertyn, “Thermal annealing of gold coated fiber optic surfaces for improved plasmonic biosensing,” Sens. Actu. B 229, 678–685 (2016).
[Crossref]

Lancry, M.

M. Cavillon, M. Lancry, B. Poumellec, Y. Wang, J. Canning, K. Cook, T. Hawkins, P. Dragic, and J. Ballato, “Overview of high temperature fibre Bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibres,” J. Phys.: Photonics 1, 042001 (2019).
[Crossref]

Lang, T.

Lao, J.

Y. Si, J. Lao, X. Zhang, Y. Liu, S. Cai, A. G. Vila, K. Li, Y. Huang, Y. Yuan, C. Caucheteur, and T. Guo, “Electrochemical plasmonic fiber-optic sensors for ultra-sensitive heavy metal detection,” J. Lightwave Technol. 37, 3495–3502 (2019).
[Crossref]

J. Lao, L. Han, Z. Wu, X. Zhang, Y. Huang, Y. Tang, and T. Guo, “Gold nanoparticle-functionalized surface plasmon resonance optical fiber biosensor: in situ detection of thrombin with 1 nM detection limit,” J. Lightwave Technol. 37, 2748–2755 (2019).
[Crossref]

J. Lao, P. Sun, F. Liu, X. Zhang, C. Zhao, W. Mai, T. Guo, G. Xiao, and J. Albert, “In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage,” Light: Sci. Appl. 7, 1–12 (2018).
[Crossref]

X. Chen, F. Du, T. Guo, J. Lao, X. Zhang, Z. Zhang, F. Liu, J. Li, C. Chen, and B.-O. Guan, “Liquid crystal-embedded tilted fiber grating electric field intensity sensor,” J. Lightwave Technol. 35 , 3347–3353 (2017).
[Crossref]

LaRochelle, S.

Laronche, A.

Larrieu, J.

M. Loyez, J. Larrieu, S. Chevineau, M. Remmelink, D. Leduc, B. Bondue, P. Lambert, J. Devière, R. Wattiez, and C. Caucheteur, “In situ cancer diagnosis through online plasmonics,” Biosens. Bioelectron. 131, 104–112 (2019).
[Crossref]

C. Ribaut, M. Loyez, J. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref]

Latifi, H.

A. Layeghi and H. Latifi, “Magnetic field vector sensor by a nonadiabatic tapered Hi-Bi fiber and ferrofluid nanoparticles,” Opt. Laser Technol. 102, 184–190 (2018).
[Crossref]

Latka, I.

Lavrinenko, A. V.

A. V. Lavrinenko, J. Laegsgaard, N. Gregersen, F. Schmidt, and T. Søndergaard, Numerical Methods in Photonics (CRC Press, 2017).

Layeghi, A.

A. Layeghi and H. Latifi, “Magnetic field vector sensor by a nonadiabatic tapered Hi-Bi fiber and ferrofluid nanoparticles,” Opt. Laser Technol. 102, 184–190 (2018).
[Crossref]

Le, A. D. D.

A. D. D. Le, J. Hwang, M. Yusuf, K. H. Park, S. Park, and J. Kim, “Simultaneous measurement of humidity and temperature with CYTOP-reduced graphene oxide-overlaid two-mode optical fiber sensor,” Sens. Actuators B 298, 126841 (2019).
[Crossref]

Leblanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15 , 1442–1463 (1997).
[Crossref]

Leblond, F.

J. Desroches, M. Jermyn, M. Pinto, F. Picot, M.-A. Tremblay, S. Obaid, E. Marple, K. Urmey, D. Trudel, G. Soulez, M.-C. Guiot, B. C. Wilson, K. Petrecca, and F. Leblond, “A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy,” Sci. Rep. 8, 1792 (2018).
[Crossref]

Leduc, D.

M. Loyez, J. Larrieu, S. Chevineau, M. Remmelink, D. Leduc, B. Bondue, P. Lambert, J. Devière, R. Wattiez, and C. Caucheteur, “In situ cancer diagnosis through online plasmonics,” Biosens. Bioelectron. 131, 104–112 (2019).
[Crossref]

Lee, D.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129 (2006).
[Crossref]

Lee, S. B.

Lee, S. W.

L. L. Liu, L. Marques, R. Correia, S. P. Morgan, S. W. Lee, P. Tighe, L. Fairclough, and S. Korposh, “Highly sensitive label-free antibody detection using a long period fibre grating sensor,” Sens. Act. B 271, 24–32 (2018).
[Crossref]

Lee, S.-W.

S. Korposh, S. W. James, S.-W. Lee, and R. P. Tatam, “Tapered optical fibre sensors: current trends and future perspectives,” Sensors 19, 2294 (2019).
[Crossref]

Lee, Y.-S.

Lei, X. Q.

X. Q. Lei, Y. T. Yu, W. J. Feng, B. J. Peng, and X. D. Li, “A novel fiber temperature sensor with liquid-crystal filled SM-NC-SM structure,” J. Optoelectron. Laser 26, 2278–2282 (2015).
[Crossref]

Lei, Z.

Z. Shuo, D. Sifan, W. Zemin, S. Cuiting, C. Xudong, M. Yiwei, Z. Lei, L. Chunlian, G. Tao, Y. Wenlei, and Y. Libo, “A miniature SMS-LPG bending sensor with high sensitivity based on multimode fiber embedded-LPG,” Sens. Actuators, A 295, 31–36 (2019).
[Crossref]

Leitao, C.

S. Novais, M. Nascimento, L. Grande, M. F. Domingues, P. Antunes, N. Alberto, C. Leitao, R. Oliveira, S. Koch, G. T. Kim, S. Passerini, and J. Pinto, “Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors,” Sensors 16 , 1394 (2016).
[Crossref]

Leitão, C.

G. Yang, C. Leitão, Y. Li, J. Pinto, and X. Jiang, “Real-time temperature measurement with fiber Bragg sensors in lithium batteries for safety usage,” Measurement 46 , 3166–3172 (2013).
[Crossref]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bahtia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

Leon-Saval, S. G.

Lepinay, S.

S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosens. Bioelectron. 52, 337–344 (2014).
[Crossref]

Lépinay, S.

S. Lépinay, A. Ianoul, and J. Albert, “Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules,” Talanta 128, 401–407 (2014).
[Crossref]

Leung, A.

A. Shakeri, N. A. Jarad, A. Leung, L. Soleymani, and T. F. Didar, “Biofunctionalization of glass- and paper-based microfluidic devices: a review,” Adv. Mater. Interfaces 6, 1–16 (2019).
[Crossref]

Li, B.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

Li, C.

F. Mumtaz, P. Cheng, C. Li, S. Cheng, C. Du, M. Yang, Y. Dai, and W. Hu, “A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer,” IEEE Sens. J. 20, 7074–7081 (2020).
[Crossref]

W. Hu, C. Li, S. Cheng, F. Mumtaz, C. Du, and M. Yang, “Etched multicore fiber Bragg gratings for refractive index sensing with temperature in-line compensation,” OSA Continuum 3 , 1058–1067 (2020).
[Crossref]

C. Zhang, T. Ning, J. Li, L. Pei, C. Li, and H. Lin, “Refractive index sensor based on tapered multicore fiber,” Opt. Fiber Technol. 33, 71–76 (2017).
[Crossref]

Li, H.

W. Chen, Y. Zhang, H. Yang, Y. Qiu, H. Li, Z. Chen, and C. Yu, “Non-invasive measurement of vital signs based on seven-core fiber interferometer,” IEEE Sens. J. 21, 10703–10710 (2021).
[Crossref]

Y. Xu, G. Ren, Y. Jiang, Y. Gao, H. Li, W. Jin, Y. Wu, Y. Shen, and S. Jian, “Bending effect characterization of individual higher-order modes in few-mode fibers,” Opt. Lett. 42, 3343–3346 (2017).
[Crossref]

Li, H. N.

F. Tang, Z. Li, Y. Chen, H. N. Li, J. Huang, and M. J. O’Keefe, “Monitoring passive film growth on steel using Fe-C coated long period grating fiber sensor,” IEEE Sens. J. 19, 6748–6755 (2019).
[Crossref]

Li, J.

X. Gao, T. Ning, C. Zhang, J. Xu, J. Zheng, H. Lin, J. Li, L. Pei, and H. You, “A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing,” Opt. Commun. 454, 124441 (2020).
[Crossref]

F. Ouellette, J. Li, Z. Ou, and J. Albert, “High-resolution interrogation of tilted fiber Bragg gratings using an extended range dual wavelength differential detection,” Opt. Express 28, 14662–14676 (2020).
[Crossref]

C. Zhang, T. Ning, J. Zheng, X. Gao, H. Lin, J. Li, L. Pei, and X. Wen, “Miniature optical fiber temperature sensor based on FMF-SCF structure,” Opt. Fiber Technol. 41, 217–221 (2018).
[Crossref]

C. Zhang, T. Ning, J. Li, L. Pei, C. Li, and H. Lin, “Refractive index sensor based on tapered multicore fiber,” Opt. Fiber Technol. 33, 71–76 (2017).
[Crossref]

X. Chen, F. Du, T. Guo, J. Lao, X. Zhang, Z. Zhang, F. Liu, J. Li, C. Chen, and B.-O. Guan, “Liquid crystal-embedded tilted fiber grating electric field intensity sensor,” J. Lightwave Technol. 35 , 3347–3353 (2017).
[Crossref]

Z. P. Yu, L. Jin, L. H. Chen, J. Li, Y. Ran, and B. O. Guan, “Microfiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 27 , 2575–2578 (2015).
[Crossref]

M. L. Sham, J. Li, P. C. Ma, and J. K. Kim, “Cleaning and functionalization of polymer surfaces and nanoscale carbon fillers by UV/ozone treatment: a review,” J. Compos. Mater. 43, 1537–1564 (2009).
[Crossref]

Li, K.

R. Wang, Z. Li, X. Chen, N. Hu, Y. Xiao, K. Li, and T. Guo, “Mode Splitting in ITO-nanocoated tilted fiber Bragg gratings for vector twist measurement,” J. Lightwave Technol 39 , 4151–4157 (2021).
[Crossref]

L. Liu, X. Zhang, Q. Zhu, K. Li, Y. Lu, X. Zhou, and T. Guo, “Ultrasensitive detection of endocrine disruptors via superfine plasmonic spectral combs,” Light Sci. Appl. 10, 181 (2021).
[Crossref]

F. Liu, X. Zhang, K. Li, T. Guo, A. Ianoul, and J. Albert, “Discrimination of bulk and surface refractive index change in plasmonic sensors with narrow bandwidth resonance combs,” ACS Sens. 6, 3013–3023 (2021).
[Crossref]

Y. Si, J. Lao, X. Zhang, Y. Liu, S. Cai, A. G. Vila, K. Li, Y. Huang, Y. Yuan, C. Caucheteur, and T. Guo, “Electrochemical plasmonic fiber-optic sensors for ultra-sensitive heavy metal detection,” J. Lightwave Technol. 37, 3495–3502 (2019).
[Crossref]

Li, K. W.

S. S. Cai, F. Liu, R. L. Wang, Y. G. Xiao, K. W. Li, C. Caucheteur, and T. Guo, “Narrow bandwidth fiber-optic spectral combs for renewable hydrogen detection,” Sci. China Inf. Sci. 63 , 222401 (2020).
[Crossref]

Li, L.

Li, P.

P. Li, P. Tian, C. Guan, Z. Zhu, Y. Li, J. Yang, J. Shi, and L. Yuan, “Heterogeneous double period array multicore fiber and its application in Bragg grating sensor,” IEEE Sens. J. 19, 6193–6196 (2019).
[Crossref]

Li, Q.

Li, S.

R. Zhou, F. Chen, S. Li, R. Wang, and X. Qiao, “Three-dimensional vector accelerometer using a multicore fiber inscribed with three FBGs,” J. Lightwave Technol. 39, 3244–3250 (2021).
[Crossref]

M. Ma, H. Chen, S. Li, X. Jing, W. Zhang, and M. Wang, “Analysis of a magnetic field sensor based on a Sagnac interferometer using a magnetic fluid-filled birefringent photonic crystal fiber,” IEEE Photonics J. 11 , 1–10 (2019).
[Crossref]

Li, X.

Li, X. D.

X. Q. Lei, Y. T. Yu, W. J. Feng, B. J. Peng, and X. D. Li, “A novel fiber temperature sensor with liquid-crystal filled SM-NC-SM structure,” J. Optoelectron. Laser 26, 2278–2282 (2015).
[Crossref]

Li, Y.

Z. Luo, H. Yu, Y. Zheng, Z. Zheng, Y. Li, and X. Jiang, “Selective mode excitation in a few-mode photonic crystal fiber for strain sensing with restrained temperature response,” J. Lightwave Technol. 38, 4560–4571 (2020).
[Crossref]

X. Liang, Y. Li, Z. Geng, and Z. Liu, “Selective transverse mode operation of a fiber laser based on few-mode FBG for rotation sensing,” Opt. Express 27, 37964–37974 (2019).
[Crossref]

P. Li, P. Tian, C. Guan, Z. Zhu, Y. Li, J. Yang, J. Shi, and L. Yuan, “Heterogeneous double period array multicore fiber and its application in Bragg grating sensor,” IEEE Sens. J. 19, 6193–6196 (2019).
[Crossref]

Y. Li, H. Ma, L. Gan, Q. Liu, Z. Yan, D. Liu, and Q. Sun, “Immobilized optical fiber microprobe for selective and high sensitive glucose detection,” Sens. Actuators B 255, 3004–3010 (2018).
[Crossref]

H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 40, 5042–5045 (2015).
[Crossref]

G. Yang, C. Leitão, Y. Li, J. Pinto, and X. Jiang, “Real-time temperature measurement with fiber Bragg sensors in lithium batteries for safety usage,” Measurement 46 , 3166–3172 (2013).
[Crossref]

Li, Z.

R. Wang, Z. Li, X. Chen, N. Hu, Y. Xiao, K. Li, and T. Guo, “Mode Splitting in ITO-nanocoated tilted fiber Bragg gratings for vector twist measurement,” J. Lightwave Technol 39 , 4151–4157 (2021).
[Crossref]

Z. Li and H. Zhu, “Fiber-optic surface waveguide modes excited by inter/intra mode transition for refractometric sensitivity enhancement,” IEEE J. Sel. Top. Quantum Electron. 27, 5600308 (2021).
[Crossref]

Z. Li, Y.-X. Zhang, W.-G. Zhang, L.-X. Kong, Y. Yue, and T.-Y. Yan, “Parallelized fiber Michelson interferometers with advanced curvature sensitivity plus abated temperature crosstalk,” Opt. Lett. 45, 4996–4999 (2020).
[Crossref]

F. Tang, Z. Li, Y. Chen, H. N. Li, J. Huang, and M. J. O’Keefe, “Monitoring passive film growth on steel using Fe-C coated long period grating fiber sensor,” IEEE Sens. J. 19, 6748–6755 (2019).
[Crossref]

Y. Yuan, T. Guo, X. Qiu, J. Tang, Y. Huang, L. Zhuang, S. Zhou, Z. Li, B. Guan, X. Zhang, and J. Albert, “Electrochemical surface plasmon resonance fiber-optic sensor: in-situ detection of electroactive biofilms,” Anal. Chem. 88, 7609–7616 (2016).
[Crossref]

Lian, X.

Liang, X.

Liao, C.

Libo, Y.

Z. Shuo, D. Sifan, W. Zemin, S. Cuiting, C. Xudong, M. Yiwei, Z. Lei, L. Chunlian, G. Tao, Y. Wenlei, and Y. Libo, “A miniature SMS-LPG bending sensor with high sensitivity based on multimode fiber embedded-LPG,” Sens. Actuators, A 295, 31–36 (2019).
[Crossref]

LiKamWa, P.

J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000 °C,” Opt. Lett. 39, 4309–4312 (2014).
[Crossref]

J. Antonio-Lopez, D. May-Arrioja, and P. LiKamWa, “Optofluidic tuning of multimode interference fiber filters,” in Enabling Photonics Technologies for Defense, Security, and Aerospace Applications V (SPIE , 2009 ), p. 73390D .

Lim, K.-S.

Lin, H.

X. Gao, T. Ning, C. Zhang, J. Xu, J. Zheng, H. Lin, J. Li, L. Pei, and H. You, “A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing,” Opt. Commun. 454, 124441 (2020).
[Crossref]

C. Zhang, T. Ning, J. Zheng, X. Gao, H. Lin, J. Li, L. Pei, and X. Wen, “Miniature optical fiber temperature sensor based on FMF-SCF structure,” Opt. Fiber Technol. 41, 217–221 (2018).
[Crossref]

C. Zhang, T. Ning, J. Li, L. Pei, C. Li, and H. Lin, “Refractive index sensor based on tapered multicore fiber,” Opt. Fiber Technol. 33, 71–76 (2017).
[Crossref]

Lin, Q.

Lin, W.

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[Crossref]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, B. Song, and J. Wu, “Two-dimensional magnetic field vector sensor based on tilted fiber Bragg grating and magnetic fluid,” J. Lightwave Technol. 31 , 2599–2605 (2013).
[Crossref]

Y. Miao, K. Zhang, B. Liu, W. Lin, H. Zhang, Y. Lu, and J. Yao, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photonics Technol. Lett. 25 , 306–309 (2012).
[Crossref]

Liou, C. L.

C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, “Characteristics of hydrogenated fiber Bragg gratings,” Appl. Phys. A 64, 191–197 (1997).
[Crossref]

Liu, B.

K. Yang, B. Liu, C. Liao, Y. Wang, Z. Cai, J. Tang, Y. Yang, and Y. Wang, “Highly localized point-by-point fiber Bragg grating for multi-parameter measurement,” J. Lightwave Technol. 39 , 6686–6690 (2021).
[Crossref]

P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: review and perspective,” Appl. Phys. Rev. 6, 041302 (2019).
[Crossref]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, B. Song, and J. Wu, “Two-dimensional magnetic field vector sensor based on tilted fiber Bragg grating and magnetic fluid,” J. Lightwave Technol. 31 , 2599–2605 (2013).
[Crossref]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[Crossref]

Y. Miao, K. Zhang, B. Liu, W. Lin, H. Zhang, Y. Lu, and J. Yao, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photonics Technol. Lett. 25 , 306–309 (2012).
[Crossref]

Liu, C.

Liu, D.

F. Wei, D. Liu, Z. Wang, Z. Wang, G. Farrell, Q. Wu, G.-D. Peng, and Y. Semenova, “Enhancing the visibility of Vernier effect in a tri-microfiber coupler fiber loop interferometer for ultrasensitive refractive index and temperature sensing,” J. LightwaveTechnol. 39, 1523–1529 (2021).
[Crossref]

C. Shen, D. Liu, X. Lian, T. Lang, C. Zhao, Y. Semenova, and J. Albert, “Microfluidic flow direction and rate vector sensor based on a partially gold-coated TFBG,” Opt. Lett. 45, 2776–2779 (2020).
[Crossref]

C. Shen, X. Lian, V. Kavungal, C. Zhong, D. Liu, Y. Semenova, G. Farrell, J. Albert, and J. F. Donegan, “Optical spectral sweep comb liquid flow rate sensor,” Opt. Lett. 43, 751–754 (2018).
[Crossref]

Y. Li, H. Ma, L. Gan, Q. Liu, Z. Yan, D. Liu, and Q. Sun, “Immobilized optical fiber microprobe for selective and high sensitive glucose detection,” Sens. Actuators B 255, 3004–3010 (2018).
[Crossref]

C. Shen, C. Zhong, D. Liu, X. Xian, J. Zheng, J. Wang, Y. Semenova, G. Farrell, J. Albert, and J. F. Donegan, “Measurements of milli-Newton surface tension forces with tilted fiber Bragg gratings,” Opt. Lett. 43, 2–5 (2018).
[Crossref]

R. Wang, M. Tang, S. Fu, Z. Feng, W. Tong, and D. Liu, “Spatially arrayed long period gratings in multicore fiber by programmable electrical arc discharge,” IEEE Photonics J. 9, 4500310 (2017).
[Crossref]

Z. Yan, Q. Sun, C. Wang, Z. Sun, C. Mou, K. Zhou, D. Liu, and L. Zhang, “Refractive index and temperature sensitivity characterization of excessively tilted fiber grating,” Opt. Express 25, 3336–3346 (2017).
[Crossref]

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and W. Ni, “High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure,” Opt. Commun. 405, 416–420 (2017).
[Crossref]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 40, 5042–5045 (2015).
[Crossref]

Liu, F.

F. Liu, X. Zhang, K. Li, T. Guo, A. Ianoul, and J. Albert, “Discrimination of bulk and surface refractive index change in plasmonic sensors with narrow bandwidth resonance combs,” ACS Sens. 6, 3013–3023 (2021).
[Crossref]

Z. Zhang, F. Liu, Q. Ma, L. Li, and T. Guo, “Vector magnetometer based on localized scattering between optical fiber spectral combs and magnetic nanoparticles,” J. Lightwave Technol. 39 , 6599–6605 (2021).
[Crossref]

S. S. Cai, F. Liu, R. L. Wang, Y. G. Xiao, K. W. Li, C. Caucheteur, and T. Guo, “Narrow bandwidth fiber-optic spectral combs for renewable hydrogen detection,” Sci. China Inf. Sci. 63 , 222401 (2020).
[Crossref]

M. Loyez, E. M. Hassan, M. Lobry, F. Liu, C. Caucheteur, R. Wattiez, M. C. DeRosa, W. G. Willmore, and J. Albert, “Rapid detection of circulating breast cancer cells using a multiresonant optical fiber aptasensor with plasmonic amplification,” ACS Sens. 5, 454–463 (2020).
[Crossref]

F. Liu, X. Zhang, T. Guo, and J. Albert, “Optical detection of the percolation threshold of nanoscale silver coatings with optical fiber gratings,” APL Photonics 5, 076101 (2020).
[Crossref]

F. Liu and J. Albert, “40 GHz-rate all-optical cross-modulation of core-guided near infrared light in single mode fiber by surface plasmons on gold-coated tilted fiber Bragg gratings,” APL Photonics 4, 126104 (2019).
[Crossref]

T. Gang, F. Liu, M. Hu, and J. Albert, “Integrated differential area method for variable sensitivity interrogation of tilted fiber Bragg grating sensors,” J. Lightwave Technol. 37, 4531–4536 (2019).
[Crossref]

X. Zhang, S. Cai, F. Liu, H. Chen, P. Yan, Y. Yuan, T. Guo, and J. Albert, “In situ determination of the complex permittivity of ultrathin H2-infused palladium coatings for plasmonic fiber optic sensors in the near infrared,” J. Mater. Chem. C 6, 5161–5170 (2018).
[Crossref]

F. Liu, X. Tong, C. Zhang, C. Deng, Q. Xiong, Z. Zheng, and P. Wang, “Multi-peak detection algorithm based on the Hilbert transform for optical FBG sensing,” Opt. Fiber Technol. 45, 47–52 (2018).
[Crossref]

J. Lao, P. Sun, F. Liu, X. Zhang, C. Zhao, W. Mai, T. Guo, G. Xiao, and J. Albert, “In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage,” Light: Sci. Appl. 7, 1–12 (2018).
[Crossref]

X. Chen, F. Du, T. Guo, J. Lao, X. Zhang, Z. Zhang, F. Liu, J. Li, C. Chen, and B.-O. Guan, “Liquid crystal-embedded tilted fiber grating electric field intensity sensor,” J. Lightwave Technol. 35 , 3347–3353 (2017).
[Crossref]

C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, and J. Albert, “Ultrasensitive plasmonic sensing in air using optical fibre spectral combs,” Nat. Commun. 7, 13371 (2016).
[Crossref]

Liu, G.

Y. Chen, Y. Hu, H. Cheng, F. Yan, Q. Lin, Y. Chen, P. Wu, L. Chen, G. Liu, G. Peng, Y. Luo, and Z. Chen, “Side-polished single-mode-multimode-single-mode fiber structure for the vector magnetic field sensing,” J. Lightwave Technol. 38 , 5837–5843 (2020).
[Crossref]

Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic nanoparticles functionalized few-mode-fiber-based plasmonic vector magnetometer,” Nanomaterials 9 , 785 (2019).
[Crossref]

Liu, J.

Q. Wu, Y. Qu, J. Liu, J. Yuan, S.-P. Wan, T. Wu, X.-D. He, B. Liub, D. Liuc, and Y. Ma, “Singlemode-multimode-singlemode fiber structures for sensing applications – a review,” IEEE Sens. J. 21 , 12734–12751 (2021).
[Crossref]

Liu, L.

L. Liu, X. Zhang, Q. Zhu, K. Li, Y. Lu, X. Zhou, and T. Guo, “Ultrasensitive detection of endocrine disruptors via superfine plasmonic spectral combs,” Light Sci. Appl. 10, 181 (2021).
[Crossref]

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and W. Ni, “High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure,” Opt. Commun. 405, 416–420 (2017).
[Crossref]

Liu, L. L.

L. L. Liu, L. Marques, R. Correia, S. P. Morgan, S. W. Lee, P. Tighe, L. Fairclough, and S. Korposh, “Highly sensitive label-free antibody detection using a long period fibre grating sensor,” Sens. Act. B 271, 24–32 (2018).
[Crossref]

Liu, Q.

Z. He and Q. Liu, “Optical fiber distributed acoustic sensors: a review,” J. Lightwave Technol. 39 , 3671–3686 (2021).
[Crossref]

Y. Li, H. Ma, L. Gan, Q. Liu, Z. Yan, D. Liu, and Q. Sun, “Immobilized optical fiber microprobe for selective and high sensitive glucose detection,” Sens. Actuators B 255, 3004–3010 (2018).
[Crossref]

Liu, S.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. Shum, and M. Tang, “Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multiparameter measurement,” IEEE Photonics J. 8, 1–8 (2016).
[Crossref]

Liu, T.

J. Yin, S. Ruan, T. Liu, J. Jiang, S. Wang, H. Wei, and P. Yan, “All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber,” Sens. Actuators B 238, 518–524 (2017).
[Crossref]

Liu, T.-L.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Liu, Y.

J. Zhao, J. Xu, C. Wang, Y. Liu, and Z. Yang, “Experimental demonstration of multi-parameter sensing based on polarized interference of polarization-maintaining few-mode fibers,” Opt. Express 28, 20372–20378 (2020).
[Crossref]

Y. Liu, A. Zhou, and L. Yuan, “Gelatin-coated Michelson interferometric humidity sensor based on a multicore fiber with helical structure,” J. Lightwave Technol. 37, 2452–2457 (2019).
[Crossref]

Y. Si, J. Lao, X. Zhang, Y. Liu, S. Cai, A. G. Vila, K. Li, Y. Huang, Y. Yuan, C. Caucheteur, and T. Guo, “Electrochemical plasmonic fiber-optic sensors for ultra-sensitive heavy metal detection,” J. Lightwave Technol. 37, 3495–3502 (2019).
[Crossref]

B. Luo, Y. Xu, S. Wu, M. Zhao, P. Jiang, S. Shi, Z. Zhang, Y. Wang, L. Wang, and Y. Liu, “A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus,” Biosens. Bioelectron. 100, 169–175 (2018).
[Crossref]

W. Hu, Y. Huang, C. Chen, Y. Liu, T. Guo, and B. O. Guan, “Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification,” Sens. Act. B 264, 440–447 (2018).
[Crossref]

Y. Zhao, C. Wang, G. Yin, B. Jiang, K. Zhou, C. Mou, Y. Liu, L. Zhang, and T. Wang, “Simultaneous directional curvature and temperature sensor based on a tilted few-mode fiber Bragg grating,” Appl. Opt. 57, 1671–1678 (2018).
[Crossref]

Y. Liu and J. Yu, “Oriented immobilization of proteins on solid supports for use in biosensors and biochips: a review,” Microchim. Acta 183, 1–19 (2016).
[Crossref]

B. Luo, Z. Yan, Z. Sun, Y. Liu, M. Zhao, and L. Zhang, “Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration,” Opt. Express 23, 32429 (2015).
[Crossref]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, B. Song, and J. Wu, “Two-dimensional magnetic field vector sensor based on tilted fiber Bragg grating and magnetic fluid,” J. Lightwave Technol. 31 , 2599–2605 (2013).
[Crossref]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[Crossref]

Liu, Y. J.

K. J. Huang, Y. J. Liu, H. B. Wang, T. Gan, Y. M. Liu, and L. L. Wang, “Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide-graphene composites and gold nanoparticles,” Sens. Act. B 191, 828–836 (2014).
[Crossref]

Liu, Y. M.

K. J. Huang, Y. J. Liu, H. B. Wang, T. Gan, Y. M. Liu, and L. L. Wang, “Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide-graphene composites and gold nanoparticles,” Sens. Act. B 191, 828–836 (2014).
[Crossref]

Liu, Z.

Liub, B.

Q. Wu, Y. Qu, J. Liu, J. Yuan, S.-P. Wan, T. Wu, X.-D. He, B. Liub, D. Liuc, and Y. Ma, “Singlemode-multimode-singlemode fiber structures for sensing applications – a review,” IEEE Sens. J. 21 , 12734–12751 (2021).
[Crossref]

Liuc, D.

Q. Wu, Y. Qu, J. Liu, J. Yuan, S.-P. Wan, T. Wu, X.-D. He, B. Liub, D. Liuc, and Y. Ma, “Singlemode-multimode-singlemode fiber structures for sensing applications – a review,” IEEE Sens. J. 21 , 12734–12751 (2021).
[Crossref]

Lobry, M.

M. Lobry, M. Loyez, K. Chah, E. M. Hassan, E. Goormaghtigh, M. C. DeRosa, R. Wattiez, and C. Caucheteur, “HER2 biosensing through SPR-envelope tracking in plasmonic optical fiber gratings,” Biomed. Opt. Express 11, 4862–4871 (2020).
[Crossref]

M. Loyez, E. M. Hassan, M. Lobry, F. Liu, C. Caucheteur, R. Wattiez, M. C. DeRosa, W. G. Willmore, and J. Albert, “Rapid detection of circulating breast cancer cells using a multiresonant optical fiber aptasensor with plasmonic amplification,” ACS Sens. 5, 454–463 (2020).
[Crossref]

M. Lobry, M. Loyez, E. M. Hassan, K. Chah, M. C. DeRosa, E. Goormaghtigh, R. Wattiez, and C. Caucheteur, “Multimodal plasmonic optical fiber grating aptasensor,” Opt. Express 28, 7539 (2020).
[Crossref]

M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
[Crossref]

M. Loyez, M. Lobry, R. Wattiez, and C. Caucheteur, “Optical fiber gratings immunoassays,” Sensors 19, 2595 (2019).
[Crossref]

Lochbaum, A.

A. Raghavan, P. Kiesel, L. W. Sommer, J. Schwartz, A. Lochbaum, A. Hegyi, A. Schuh, K. Arakaki, B. Saha, A. Ganguli, K. H. Kim, C. Kim, H. J. Hah, S. kim, G.-O. Hwang, G.-C. Chung, B. Choi, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance,” J. Power Sources 341, 466–473 (2017).
[Crossref]

A. Ganguli, B. Saha, A. Raghavan, P. Kiesel, K. Arakaki, A. Schuh, J. Schwartz, A. Hegyi, L. W. Sommer, A. Lochbaum, S. Sahu, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: internal cell signals and utility for state estimation,” J. Power Sources 341, 474–482 (2017).
[Crossref]

Logan, E. R.

J. Huang, L. A. Blanquer, J. Bonefacino, E. R. Logan, D. A. D. Corte, C. Delacourt, B. M. Gallant, S. T. Boles, J. R. Dhan, H.-Y. Tam, and J.-M. Tarascon, “Operando decoding of chemical and thermal events in commercial Na (Li)-ion cells via optical sensors,” Nat. Energy 5 , 674–683 (2020).
[Crossref]

Lopez, D.

I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]

Lopez, E. A.

López-Amo, M.

P. R. Horche, M. López-Amo, M. A. Muriel, and J. A. Martin-Pereda, “Spectral behavior of a low-cost all-fiber component based on untapered multifiber unions,” IEEE Photonics Technol. Lett. 1, 184–187 (1989).
[Crossref]

Lopez-Cortes, D.

Lorenz, A.

Los, M.

M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Act. B 250, 32–38 (2017).
[Crossref]

Lovato, L.

M. Oliverio, S. Perotto, G. C. Messina, L. Lovato, and F. De Angelis, “Chemical functionalization of plasmonic surface biosensors: A tutorial review on issues, strategies, and costs,” ACS Appl. Mater. Interfaces 9, 29394–29411 (2017).
[Crossref]

Love, J.

A. W. Snyder and J. Love, Optical waveguide theory (Springer Science & Business Media , 2012).

Loyez, M.

M. Lobry, M. Loyez, K. Chah, E. M. Hassan, E. Goormaghtigh, M. C. DeRosa, R. Wattiez, and C. Caucheteur, “HER2 biosensing through SPR-envelope tracking in plasmonic optical fiber gratings,” Biomed. Opt. Express 11, 4862–4871 (2020).
[Crossref]

M. Lobry, M. Loyez, E. M. Hassan, K. Chah, M. C. DeRosa, E. Goormaghtigh, R. Wattiez, and C. Caucheteur, “Multimodal plasmonic optical fiber grating aptasensor,” Opt. Express 28, 7539 (2020).
[Crossref]

M. Loyez, E. M. Hassan, M. Lobry, F. Liu, C. Caucheteur, R. Wattiez, M. C. DeRosa, W. G. Willmore, and J. Albert, “Rapid detection of circulating breast cancer cells using a multiresonant optical fiber aptasensor with plasmonic amplification,” ACS Sens. 5, 454–463 (2020).
[Crossref]

M. Lobry, D. Lahem, M. Loyez, M. Debliquy, K. Chah, M. David, and C. Caucheteur, “Non-enzymatic D-glucose plasmonic optical fiber grating biosensor,” Biosens. Bioelectron. 142, 111506 (2019).
[Crossref]

M. Loyez, J. Larrieu, S. Chevineau, M. Remmelink, D. Leduc, B. Bondue, P. Lambert, J. Devière, R. Wattiez, and C. Caucheteur, “In situ cancer diagnosis through online plasmonics,” Biosens. Bioelectron. 131, 104–112 (2019).
[Crossref]

M. Loyez, M. Lobry, R. Wattiez, and C. Caucheteur, “Optical fiber gratings immunoassays,” Sensors 19, 2595 (2019).
[Crossref]

M. Loyez, C. Ribaut, C. Caucheteur, and R. Wattiez, “Functionalized gold electroless-plated optical fiber gratings for reliable surface biosensing,” Sens. Act B 280, 54–61 (2019).
[Crossref]

M. Loyez, J. Albert, C. Caucheteur, and R. Wattiez, “Cytokeratins biosensing using tilted fiber gratings,” Biosensors 8, 1–8 (2018).
[Crossref]

C. Ribaut, M. Loyez, J. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref]

T. Guo, Á González-vila, M. Loyez, and C. Caucheteur, “Plasmonic optical fiber grating immunosensing: a review,” Sensors 17, 1–19 (2017).
[Crossref]

Lu, C.

Lu, J.

Lu, M.

F. Wang, Y. Zhang, M. Lu, Y. Du, M. Chen, S. Meng, W. Ji, C. Sun, and W. Peng, “Near-infrared band gold nanoparticles-Au film “hot spot” model based label-free ultratrace lead (II) ions detection via fiber SPR DNAzyme biosensor,” Sens. Act. B 337, 129816 (2021).
[Crossref]

Lu, P.

P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: review and perspective,” Appl. Phys. Rev. 6, 041302 (2019).
[Crossref]

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and W. Ni, “High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure,” Opt. Commun. 405, 416–420 (2017).
[Crossref]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. G. H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[Crossref]

Lu, Y.

L. Liu, X. Zhang, Q. Zhu, K. Li, Y. Lu, X. Zhou, and T. Guo, “Ultrasensitive detection of endocrine disruptors via superfine plasmonic spectral combs,” Light Sci. Appl. 10, 181 (2021).
[Crossref]

Y. Miao, K. Zhang, B. Liu, W. Lin, H. Zhang, Y. Lu, and J. Yao, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photonics Technol. Lett. 25 , 306–309 (2012).
[Crossref]

Lu, Y.-C.

Luan, F.

Luo, B.

B. Luo, Y. Xu, S. Wu, M. Zhao, P. Jiang, S. Shi, Z. Zhang, Y. Wang, L. Wang, and Y. Liu, “A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus,” Biosens. Bioelectron. 100, 169–175 (2018).
[Crossref]

B. Luo, Z. Yan, Z. Sun, Y. Liu, M. Zhao, and L. Zhang, “Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration,” Opt. Express 23, 32429 (2015).
[Crossref]

Luo, H.

Luo, Y.

Y. Chen, Y. Hu, H. Cheng, F. Yan, Q. Lin, Y. Chen, P. Wu, L. Chen, G. Liu, G. Peng, Y. Luo, and Z. Chen, “Side-polished single-mode-multimode-single-mode fiber structure for the vector magnetic field sensing,” J. Lightwave Technol. 38 , 5837–5843 (2020).
[Crossref]

Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, Y. Zhong, W. Zhu, J. Yu, and Z. Chen, “Magnetic nanoparticles functionalized few-mode-fiber-based plasmonic vector magnetometer,” Nanomaterials 9 , 785 (2019).
[Crossref]

Luo, Z.

Luyun, Y.

Lv, R. Q.

R. Q. Lv, Y. Zhao, D. Wang, and Q. Wang, “Magnetic fluid-filled optical fiber Fabry-Pérot sensor for magnetic field measurement,” IEEE Photonics Technol. Lett. 26 , 217–219 (2013).
[Crossref]

Ma, H.

Y. Li, H. Ma, L. Gan, Q. Liu, Z. Yan, D. Liu, and Q. Sun, “Immobilized optical fiber microprobe for selective and high sensitive glucose detection,” Sens. Actuators B 255, 3004–3010 (2018).
[Crossref]

Ma, J.

Ma, M.

M. Ma, H. Chen, S. Li, X. Jing, W. Zhang, and M. Wang, “Analysis of a magnetic field sensor based on a Sagnac interferometer using a magnetic fluid-filled birefringent photonic crystal fiber,” IEEE Photonics J. 11 , 1–10 (2019).
[Crossref]

Ma, P. C.

M. L. Sham, J. Li, P. C. Ma, and J. K. Kim, “Cleaning and functionalization of polymer surfaces and nanoscale carbon fillers by UV/ozone treatment: a review,” J. Compos. Mater. 43, 1537–1564 (2009).
[Crossref]

Ma, Q.

Ma, W.

H. Fan, W. Ma, L. Chen, and X. Bao, “Ultracompact twisted silica taper for 20 kHz to 94 MHz ultrasound sensing,” Opt. Lett. 45, 3889–3892 (2020).
[Crossref]

R. Zhou, X. Qiao, R. Wang, F. Chen, and W. Ma, “An optical fiber sensor based on lateral-offset spliced seven-core fiber for bending and stretching strain measurement,” IEEE Sens. J. 20, 5915–5920 (2020).
[Crossref]

Ma, Y.

D. Feng, J. Albert, Y. Hou, B. Jiang, Y. Jiang, Y. Ma, and J. Zhao, “Co-located angularly offset fiber Bragg grating pair for temperature-compensated unambiguous 3D shape sensing,” Appl. Opt. 60 , 4185–4189 (2021).
[Crossref]

Q. Wu, Y. Qu, J. Liu, J. Yuan, S.-P. Wan, T. Wu, X.-D. He, B. Liub, D. Liuc, and Y. Ma, “Singlemode-multimode-singlemode fiber structures for sensing applications – a review,” IEEE Sens. J. 21 , 12734–12751 (2021).
[Crossref]

Q. Wu, M. Yang, J. Yuan, H. P. Chan, Y. Ma, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “The use of a bend singlemode-multimode-singlemode (SMS) fibre structure for vibration sensing,” Opt. Laser Technol. 63, 29–33 (2014).
[Crossref]

Macchia, P. E.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref]

MacDougal, T. W.

D. A. Krohn, T. W. MacDougal, and A. Mendez, Fiber Optic Sensors: Fundamentals and Applications, 4th ed. (SPIE Digital Library, 2015).
[Crossref]

MacPherson, W. N.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J 8, 1292–1298 (2008).
[Crossref]

Madrigal, J.

J. Madrigal, D. Barrera, and S. Sales, “Refractive index and temperature sensing using inter-core crosstalk in multicore fibers,” J. Lightwave Technol. 37, 4703–4709 (2019).
[Crossref]

F. Khan, A. Denasi, D. Barrera, J. Madrigal, S. Sales, and S. Misra, “Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments,” IEEE Sens. J. 19, 5878–5884 (2019).
[Crossref]

D. Barrera, J. Madrigal, and S. Sales, “Long period gratings in multicore optical fibers for directional curvature sensor implementation,” J. Lightwave Technol. 36, 1063–1068 (2018).
[Crossref]

D. Barrera, J. Madrigal, and S. Sales, “Tilted fiber Bragg gratings in multicore optical fibers for optical sensing,” Opt. Lett. 42, 1460–1463 (2017).
[Crossref]

D. Zheng, J. Madrigal, D. Barrera, S. Sales, and J. Capmany, “Microwave photonic filtering for interrogating FBG-based multicore fiber curvature sensor,” IEEE Photonics Technol. Lett. 29, 1707–1710 (2017).
[Crossref]

Mai, W.

J. Lao, P. Sun, F. Liu, X. Zhang, C. Zhao, W. Mai, T. Guo, G. Xiao, and J. Albert, “In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage,” Light: Sci. Appl. 7, 1–12 (2018).
[Crossref]

Maier, R. R. J.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J 8, 1292–1298 (2008).
[Crossref]

Makara, M.

Makhneva, E.

E. Makhneva, L. Barillas, Z. Farka, M. Pastucha, P. Skládal, K.-D. Weltmann, and K. Fricke, “Functional plasma polymerized surfaces for biosensing,” ACS Appl. Mater. Interfaces 12, 17100–17112 (2020).
[Crossref]

Malachovská, V.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref]

Malcata, F. X.

S. Silva, L. Coelho, J. M. Almeida, O. Frazao, J. L. Santos, F. X. Malcata, M. Becker, M. Rothhardt, and H. Bartelt, “H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique,” IEEE Photon. Technol. Lett. 25 , 401–403 (2013).
[Crossref]

Mallick, A.

F. Chiavaioli, P. Biswas, C. Trono, S. Jana, S. Bandyopadhyay, N. Basumallick, A. Giannetti, S. Tombelli, S. Bera, A. Mallick, and F. Baldini, “Sol-gel-based titania-silica thin film overlay for long period fiber grating-based biosensors,” Anal. Chem. 87, 12024–12031 (2015).
[Crossref]

Malo, B.

K. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270–1272 (1990).
[Crossref]

Maluckov, A.

Mandia, D. J.

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating,” Opt. Lett. 40, 1713 (2015).
[Crossref]

D. J. Mandia, W. Zhou, M. J. Ward, H. Joress, J. J. Sims, J. B. Giorgi, J. Albert, and S. T. Barry, “The effect of ALD-grown Al2O3 on the refractive index sensitivity of CVD gold-coated optical fiber sensors,” Nanotechnology 26, 434002 (2015).
[Crossref]

D. J. Mandia, W. Zhou, J. Albert, and S. T. Barry, “CVD on optical fibers: tilted fiber Bragg gratings as real-time sensing platforms,” Chem. Vap. Depos. 21, 4–20 (2015).
[Crossref]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C 118, 670–678 (2014).
[Crossref]

W. Zhou, D. J. Mandia, S. T. Barry, and J. Albert, “Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions,” Opt. Express 22, 31665–31676 (2014).
[Crossref]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, A. Bialiayeu, Y. Zhang, P. G. Gordon, S. T. Barry, and J. Albert, “Polarization-dependent properties of the cladding modes of single mode fiber covered with gold nanoparticles,” Opt. Express 21, 245–255 (2013).
[Crossref]

D. J. Mandia, M. B. E. Griffiths, W. Zhou, P. G. Gordon, J. Albert, and S. T. Barry, “In situ deposition monitoring by a tilted fiber Bragg grating optical probe: probing nucleation in chemical vapour deposition of gold,” Phys. Procedia 46, 12–20 (2013).
[Crossref]

Manuilovich, E. S.

K. A. Tomyshev, E. S. Manuilovich, D. K. Tazhetdinova, E. I. Dolzhenko, and O. V. Butov, “High-precision data analysis for TFBG-assisted refractometer,” Sens. Act. A 308, 112016 (2020).
[Crossref]

K. A. Tomyshev, D. K. Tazhetdinova, E. S. Manuilovich, and O. V. Butov, “High-resolution fiber optic surface plasmon resonance sensor for biomedical applications,” J. Appl. Phys. 124, 113106 (2018).
[Crossref]

Manuylovich, E. S.

E. S. Manuylovich, V. V. Dvoyrin, and S. K. Turitsyn, “Fast mode decomposition in few-mode fibers,” Nat. Commun. 11, 5507 (2020).
[Crossref]

Mao, Y.

I. Ashry, Y. Mao, A. Trichili, B. Wang, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “A review of using few-mode fibers for optical sensing,” IEEE Access 8, 179592–179605 (2020).
[Crossref]

Markiewicz, K.

Markos, C.

Markowski, K.

T. Osuch, T. Jurek, K. Markowski, and K. Jedrzejewski, “Simultaneous measurement of liquid level and temperature using tilted fiber Bragg grating,” IEEE Sens. J. 16, 1205–1209 (2016).
[Crossref]

Marple, E.

J. Desroches, M. Jermyn, M. Pinto, F. Picot, M.-A. Tremblay, S. Obaid, E. Marple, K. Urmey, D. Trudel, G. Soulez, M.-C. Guiot, B. C. Wilson, K. Petrecca, and F. Leblond, “A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy,” Sci. Rep. 8, 1792 (2018).
[Crossref]

Marques, L.

L. L. Liu, L. Marques, R. Correia, S. P. Morgan, S. W. Lee, P. Tighe, L. Fairclough, and S. Korposh, “Highly sensitive label-free antibody detection using a long period fibre grating sensor,” Sens. Act. B 271, 24–32 (2018).
[Crossref]

Marshall, G. D.

Martin, B. L.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40 , 1170–1172 (2004).
[Crossref]

Martínez-Manuel, R.

Martinez-Rios, A.

Martin-Pereda, J. A.

P. R. Horche, M. López-Amo, M. A. Muriel, and J. A. Martin-Pereda, “Spectral behavior of a low-cost all-fiber component based on untapered multifiber unions,” IEEE Photonics Technol. Lett. 1, 184–187 (1989).
[Crossref]

Martins-Lopes, P.

S. Barrias, J. R. Fernandes, J. E. Eiras-Dias, J. Brazão, and P. Martins-Lopes, “Label free DNA-based optical biosensor as a potential system for wine authenticity,” Food Chem. 270, 299–304 (2019).
[Crossref]

Mathew, N. M.

L. Grüner-Nielsen, N. M. Mathew, and K. Rottwitt, “Characterization of few mode fibers and devices,” Opt. Fiber Technol. 52, 101972 (2019).
[Crossref]

Mathews, S.

Matias, I. R.

I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urrutia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Matias, “Optical sensors based on lossy-mode resonances,” Sens. Actuators, B 240, 174–185 (2017).
[Crossref]

D. Villar, C. R. Zamarreño, P. Sanchez, M. Hernaez, C. F. Valdivielso, F. J. Arregui, and I. R. Matias, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12, 095503 (2010).
[Crossref]

I. Del Villar, C. R. Zamarreno, M. Hernaez, F. J. Arregui, and I. R. Matias, “Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications,” J. Lightwave Technol. 28, 111–117 (2010).
[Crossref]

I. Del Villar and I. R. Matias, Optical Fibre sensors: Fundamentals for Development of Optimized Devices (Wiley-IEEE Press, 2020).

Matsuo, S.

Matus, D. Q.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Matzdorf, C.

T. A. Goebel, J. Nold, C. Hupel, S. Kuhn, N. Haarlammert, T. Schreiber, C. Matzdorf, T. O. Imogore, R. G. Krämer, D. Richter, A. Tünnermann, and S. Nolte, “Ultrashort pulse written fiber Bragg gratings as narrowband filters in multicore fibers,” Appl. Opt. 60 , 43–51 (2021).
[Crossref]

May-Arrioja, D.

J. Antonio-Lopez, D. May-Arrioja, and P. LiKamWa, “Optofluidic tuning of multimode interference fiber filters,” in Enabling Photonics Technologies for Defense, Security, and Aerospace Applications V (SPIE , 2009 ), p. 73390D .

May-Arrioja, D. A.

Mayorga-Martinez, C. C.

A. Zamora-Gálvez, E. Morales-Narváez, C. C. Mayorga-Martinez, and A. Merkoçi, “Nanomaterials connected to antibodies and molecularly imprinted polymers as bio/receptors for bio/sensor applications,” Appl. Mater. Today 9, 387–401 (2017).
[Crossref]

Mazzarella, C.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref]

McCulloch, S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings,” IEEE Sens. J 8, 1292–1298 (2008).
[Crossref]

McKenzie, D. R.

M. M. Bilek and D. R. McKenzie, “Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants,” Biophys. Rev. 2, 55–65 (2010).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed., Chap. 9 (Princeton U. Press, 2008) ISBN:9780691124568

Medina-Cruz, D.

A. Vernet-Crua, D. Medina-Cruz, E. Mostafavi, A. Benko, J. L. Cholula-Diaz, M. Suravana, H. Vahidi, H. Barabadi, and T. J. Webster, “Nanobiosensors for theranostic applications,” in Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications (Elsevier, 2021), Chap. 23, pp. 511–543 .

Medwig, T. N.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Megason, S. G.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Megret, P.

Mégret, P.

N. Safari-Yazd, K. Chah, C. Caucheteur, and P. Mégret, “Thermal regeneration of tilted Bragg gratings UV photo-inscribed in hydrogen-loaded standard optical fibers,” J. Lightwave Technol. 39, 3582–3590 (2021).
[Crossref]

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref]

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[Crossref]

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Anomalous effective strain-optic constants of nonparaxial optical fiber mode,” Opt. Lett. 39, 578 (2014).
[Crossref]

C. Caucheteur, M. Debliquy, D. Lahem, and P. Mégret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16, 16854–16859 (2008).
[Crossref]

C. Caucheteur, S. Bette, R. Garcia-Olcina, M. Wuilpart, S. Sales, J. Capmany, and P. Mégret, “Transverse strain measurements using the birefringence effect in fiber Bragg gratings,” Photon. Technol. Lett. 19 , 966–968 (2007).
[Crossref]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 15, 823–825 (1989).
[Crossref]

Mendez, A.

D. A. Krohn, T. W. MacDougal, and A. Mendez, Fiber Optic Sensors: Fundamentals and Applications, 4th ed. (SPIE Digital Library, 2015).
[Crossref]

Meng, B.

R. X. Gao, Q. Wang, F. Zhao, B. Meng, and S. L. Qu, “Optimal design and fabrication of SMS fiber temperature sensor for liquid,” Opt. Commun. 283, 3149–3152 (2010).
[Crossref]

Meng, S.

F. Wang, Y. Zhang, M. Lu, Y. Du, M. Chen, S. Meng, W. Ji, C. Sun, and W. Peng, “Near-infrared band gold nanoparticles-Au film “hot spot” model based label-free ultratrace lead (II) ions detection via fiber SPR DNAzyme biosensor,” Sens. Act. B 337, 129816 (2021).
[Crossref]

Mergo, P.

Merkoçi, A.

A. Zamora-Gálvez, E. Morales-Narváez, C. C. Mayorga-Martinez, and A. Merkoçi, “Nanomaterials connected to antibodies and molecularly imprinted polymers as bio/receptors for bio/sensor applications,” Appl. Mater. Today 9, 387–401 (2017).
[Crossref]

Messina, G. C.

M. Oliverio, S. Perotto, G. C. Messina, L. Lovato, and F. De Angelis, “Chemical functionalization of plasmonic surface biosensors: A tutorial review on issues, strategies, and costs,” ACS Appl. Mater. Interfaces 9, 29394–29411 (2017).
[Crossref]

Meyerowitz, E. M.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Meyrueis, P.

Miao, Y.

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, B. Song, and J. Wu, “Two-dimensional magnetic field vector sensor based on tilted fiber Bragg grating and magnetic fluid,” J. Lightwave Technol. 31 , 2599–2605 (2013).
[Crossref]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 151101 (2013).
[Crossref]

Y. Miao, K. Zhang, B. Liu, W. Lin, H. Zhang, Y. Lu, and J. Yao, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photonics Technol. Lett. 25 , 306–309 (2012).
[Crossref]

Mihailov, S. J.

Mikulic, P.

S. M. Tripathi, K. Dandapat, W. J. Bock, P. Mikulic, J. Perreault, and B. Sellamuthu, “Gold coated dual-resonance long-period fiber gratings (DR-LPFG) based aptasensor for cyanobacterial toxin detection,” Sens. Bio-Sensing Res. 25, 100289 (2019).
[Crossref]

A. Celebanska, Y. Chiniforooshan, M. Janik, P. Mikulic, B. Sellamuthu, R. Walsh, J. Perreault, and W. J. Bock, “Label-free cocaine aptasensor based on a long-period fiber grating,” Opt. Lett. 44, 2482 (2019).
[Crossref]

M. Janczuk-Richter, M. Dominik, E. Roźniecka, M. Koba, P. Mikulic, W. J. Bock, M. Łoś, M. Śmietana, and J. Niedziółka-Jönsson, “Long-period fiber grating sensor for detection of viruses,” Sens. Act. B 250, 32–38 (2017).
[Crossref]

A. Czapla, W. J. Bock, T. R. Wolinski, P. Mikulic, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Improving the electric field sensing capabilities of the long-period fiber grating coated with a liquid crystal layer,” Opt. Express 24, 5662–5673 (2016).
[Crossref]

M. Śmietana, T. Drażewski, P. Firek, P. Mikulic, and W. J. Bock, “Comparison of Al2O3 nano-overlays deposited with magnetron sputtering and atomic layer deposition on optical fibers for sensing purpose,” in Micro/Nano Materials, Devices, and Systems (SPIE, 2013), p. 89231G .

Milenko, K.

Milkie, D. E.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Min, B. K.

H. E. Joe, H. Yun, S.-H. Jo, M. B. G. Jun, and B. K. Min, “A review on optical fiber sensors for environmental monitoring,” Int. J. Precis. Eng. Manuf. Technol. 5 , 173–191 (2018).
[Crossref]

Misra, S.

F. Khan, A. Denasi, D. Barrera, J. Madrigal, S. Sales, and S. Misra, “Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments,” IEEE Sens. J. 19, 5878–5884 (2019).
[Crossref]

Miyake, A.

J. Nakayama, N. Y. Kasai, T. Shibutani, and A. Miyake, “Security risk analysis of a hydrogen fueling station with an on-site hydrogen production system involving methylcyclohexane,” Int. J. Hydrogen Energy 44 , 9110–9119 (2018).
[Crossref]

Mizrahi, V.

T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11, 2100–2105 (1994).
[Crossref]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

Mohd Nazal, N. A.

Molardi, C.

A. Bekmurzayeva, K. Dukenbayev, M. Shaimerdenova, I. Bekniyazov, T. Ayupova, M. Sypabekova, C. Molardi, and D. Tosi, “Etched fiber Bragg grating biosensor functionalized with aptamers for detection of thrombin,” Sensors 18 , 4298 (2018).
[Crossref]

Monberg, E. M.

Monzon-Hernandez, D.

Monzón-Hernández, D.

I. Hernández-Romano, D. Monzón-Hernández, C. Moreno-Hernández, D. Moreno-Hernandez, and J. Villatoro, “Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer,” IEEE Photonics Techn. Lett. 27, 2591–2594 (2015).
[Crossref]

Moore, J. P.

Morales-Narváez, E.

A. Zamora-Gálvez, E. Morales-Narváez, C. C. Mayorga-Martinez, and A. Merkoçi, “Nanomaterials connected to antibodies and molecularly imprinted polymers as bio/receptors for bio/sensor applications,” Appl. Mater. Today 9, 387–401 (2017).
[Crossref]

Moreno-Hernandez, D.

I. Hernández-Romano, D. Monzón-Hernández, C. Moreno-Hernández, D. Moreno-Hernandez, and J. Villatoro, “Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer,” IEEE Photonics Techn. Lett. 27, 2591–2594 (2015).
[Crossref]

Moreno-Hernández, C.

I. Hernández-Romano, D. Monzón-Hernández, C. Moreno-Hernández, D. Moreno-Hernandez, and J. Villatoro, “Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer,” IEEE Photonics Techn. Lett. 27, 2591–2594 (2015).
[Crossref]

Morey, W. W.

Morgan, S. P.

L. L. Liu, L. Marques, R. Correia, S. P. Morgan, S. W. Lee, P. Tighe, L. Fairclough, and S. Korposh, “Highly sensitive label-free antibody detection using a long period fibre grating sensor,” Sens. Act. B 271, 24–32 (2018).
[Crossref]

Mori, T.

Mosaliganti, K. R.

T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A. Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q. Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H. Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L. Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, and E. Betzig, “Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms,” Science 360 , 284 (2018).
[Crossref]

Mosse, C. A.

Mostafavi, E.

A. Vernet-Crua, D. Medina-Cruz, E. Mostafavi, A. Benko, J. L. Cholula-Diaz, M. Suravana, H. Vahidi, H. Barabadi, and T. J. Webster, “Nanobiosensors for theranostic applications,” in Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications (Elsevier, 2021), Chap. 23, pp. 511–543 .

Mou, C.

Movais, S.

M. Nascimento, S. Movais, M. Ding, M. S. Ferreira, S. Koch, S. Passerini, and J. Pinto, “Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries,” J. Power Sources 410, 1–9 (2019).
[Crossref]

Mroczka, J.

Mudhana, G.

Müller, P.

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “Three-dimensional correlative single-cell imaging utilizing fluorescence and refractive index tomography,” J. Biophotonics 11 , 1–11 (2018).
[Crossref]

Mumtaz, F.

Muriel, M. A.

P. R. Horche, M. López-Amo, M. A. Muriel, and J. A. Martin-Pereda, “Spectral behavior of a low-cost all-fiber component based on untapered multifiber unions,” IEEE Photonics Technol. Lett. 1, 184–187 (1989).
[Crossref]

Naci Inci, M.

S. Guvenc Kilic, Y. Zhu, Q. Sheng, M. Naci Inci, and M. Han, “Refractometer with etched chirped fiber Bragg grating Fabry–Perot interferometer in multicore fiber,” IEEE Photonics Technol. Lett. 31, 575–578 (2019).
[Crossref]

Nakagawa, H.

T. Yamanaka, H. Nakagawa, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “In situ Raman spectroscopic studies on concentration of electrolyte salt in lithium ion batteries by using ultrafine multifiber probes,” ChemSusChem 10 , 855–861 (2017).
[Crossref]

Nakajima, K.

Nakayama, J.

J. Nakayama, N. Y. Kasai, T. Shibutani, and A. Miyake, “Security risk analysis of a hydrogen fueling station with an on-site hydrogen production system involving methylcyclohexane,” Int. J. Hydrogen Energy 44 , 9110–9119 (2018).
[Crossref]

Napierala, M.

Nascimento, M.

M. Nascimento, S. Movais, M. Ding, M. S. Ferreira, S. Koch, S. Passerini, and J. Pinto, “Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries,” J. Power Sources 410, 1–9 (2019).
[Crossref]

M. Nascimento, M. S. Ferreira, and J. L. Pinto, “Simultaneous sensing of temperature and bi-directional strain in a prismatic Li-ion battery,” Batteries 4 , 23 (2018).
[Crossref]

M. Nascimento, T. Paixão, M. S. Ferreira, and J. Pinto, “Thermal mapping of a lithium polymer batteries pack with FBGs network,” Batteries 4 , 67 (2018).
[Crossref]

S. Novais, M. Nascimento, L. Grande, M. F. Domingues, P. Antunes, N. Alberto, C. Leitao, R. Oliveira, S. Koch, G. T. Kim, S. Passerini, and J. Pinto, “Internal and external temperature monitoring of a Li-ion battery with fiber Bragg grating sensors,” Sensors 16 , 1394 (2016).
[Crossref]

Nasilowski, T.

Nengli, D.

Nettore, I. C.

G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, “Long period fiber grating nano-optrode for cancer biomarker detection,” Biosens. Bioelectron. 80, 590–600 (2016).
[Crossref]

Newkirk, A. V.