Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Transparent conducting oxides: from all-dielectric plasmonics to a new paradigm in integrated photonics

Not Accessible

Your library or personal account may give you access

Abstract

During the past few years, the optics and photonics communities have renewed their attention toward transparent conducting oxides (TCOs), which for over two decades have been broadly employed for the fabrication of transparent electrodes in photovoltaic and communication technologies. This reinvigorated research curiosity is twofold: on the one hand, TCOs, with their metal-like properties, low optical absorption, and fabrication flexibility, represent an appealing alternative to noble metals for designing ultra-compact plasmonic devices. On the other hand, this class of hybrid compounds has been proved to possess exceptionally high optical nonlinearities when operating on a frequency window centered around their crossover point, the wavelength point at which the real part of the dielectric permittivity switches sign. Because TCOs are wide-bandgap materials with the Fermi level located in the conduction band, they are hybrid in nature, thus presenting both interband and intraband nonlinearities. This is the cause of a very rich nonlinear physics that is yet to be fully understood and explored. In addition to this, TCOs are epsilon-near-zero (ENZ) materials within a broad near-infrared spectral range, including the entire telecom bandwidth. In this operational window a myriad of novel electromagnetic phenomena have been demonstrated experimentally such as supercoupling, wavefront freezing, and photon doping. Furthermore, TCOs stand out among all other ENZ systems due to one fundamental characteristic, which is hardly attainable even by using structured materials. In fact, around their ENZ wavelength and for a quite generous operational range, these materials can be engineered to have an extremely small real index. This peculiarity leads to a slow-light effect that is ultimately responsible for a significant enhancement of the material nonlinear properties and is the cornerstone of the emerging field of near-zero-index photonics. In this regard, the recent history of nonlinear optics in conductive oxides is growing extremely fast due to a great number of experiments reporting unprecedentedly remarkable effects, including unitary index change, bandwidth-large frequency shift, efficient ultra-low-power frequency conversion, and many others. This review is meant to guide the reader through the exciting journey of TCOs, starting as an industrial material for transparent electrodes, then becoming a new alternative for low-loss plasmonics, and recently opening up new frontiers in integrated nonlinear optics. The present review is mainly focused on experimental observations.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities

Svetlana V. Boriskina, Thomas Alan Cooper, Lingping Zeng, George Ni, Jonathan K. Tong, Yoichiro Tsurimaki, Yi Huang, Laureen Meroueh, Gerald Mahan, and Gang Chen
Adv. Opt. Photon. 9(4) 775-827 (2017)

Quantum plasmonics: new opportunity in fundamental and applied photonics

Da Xu, Xiao Xiong, Lin Wu, Xi-Feng Ren, Ching Eng Png, Guang-Can Guo, Qihuang Gong, and Yun-Feng Xiao
Adv. Opt. Photon. 10(4) 703-756 (2018)

All-dielectric thermonanophotonics

George P. Zograf, Mihail I. Petrov, Sergey V. Makarov, and Yuri S. Kivshar
Adv. Opt. Photon. 13(3) 643-702 (2021)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Data availability

Data analyzed in this paper may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (20)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved