Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Miniature light-driven nanophotonic electron acceleration and control

Not Accessible

Your library or personal account may give you access

Abstract

Dielectric laser accelerators (DLAs) are fundamentally based on the interaction of photons with free electrons, where energy and momentum conservation are satisfied by mediation of a nanostructure. In this scheme, the photonic nanostructure induces near-fields which transfer energy from the photon to the electron, similar to the inverse-Smith–Purcell effect described in metallic gratings. This, in turn, may provide ground-breaking applications, as it is a technology promising to miniaturize particle accelerators down to the chip scale. This fundamental interaction can also be used to study and demonstrate quantum photon-electron phenomena. The spontaneous and stimulated Smith–Purcell effect and the photon-induced near-field electron-microscopy (PINEM) effect have evolved to be a fruitful ground for observing quantum effects. In particular, the energy spectrum of the free electron has been shown to have discrete energy peaks, spaced with the interacting photon energy. This energy spectrum is correlated to the photon statistics and number of photon exchanges that took place during the interaction. We give an overview of DLA and PINEM physics with a focus on electron phase-space manipulation.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Intense infrared lasers for strong-field science

Zenghu Chang, Li Fang, Vladimir Fedorov, Chase Geiger, Shambhu Ghimire, Christian Heide, Nobuhisa Ishii, Jiro Itatani, Chandrashekhar Joshi, Yuki Kobayashi, Prabhat Kumar, Alphonse Marra, Sergey Mirov, Irina Petrushina, Mikhail Polyanskiy, David A. Reis, Sergei Tochitsky, Sergey Vasilyev, Lifeng Wang, Yi Wu, and Fangjie Zhou
Adv. Opt. Photon. 14(4) 652-782 (2022)

Space-time wave packets

Murat Yessenov, Layton A. Hall, Kenneth L. Schepler, and Ayman F. Abouraddy
Adv. Opt. Photon. 14(3) 455-570 (2022)

Recent advances in light sources on silicon

Yu Han, Hyundai Park, John Bowers, and Kei May Lau
Adv. Opt. Photon. 14(3) 404-454 (2022)

Data availability

No data were generated or analyzed in the presented research.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (33)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (66)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.