Abstract
Black phosphorus is a newly rising layered material with tremendous and intriguing physical, chemical, and electronic properties. Recently, it was reintroduced into the community from the perspective of two-dimensional (2D) materials, showing excellent carrier mobility, strong light–matter interactions in the mid-infrared (mid-IR) range, and unique anisotropic physical properties. These features are beyond the existing 2D materials in terms of bandgap range and mobility/bandgap trade-off, making it possible to bridge the application gaps ranging from mid-IR photonics to high-performance field-effect devices. In this paper, we review the status and perspectives of the optical properties of black phosphorus, with a particular emphasis on their broadband tunable bandgap and anisotropic optical properties. We began with a brief introduction on the history, synthesis, crystal/band structures, and basic physical properties of black phosphorus. In Section 3, we discuss the optical properties of black phosphorus, including comparison of the electronic-excitation-induced versus phonon-excitation-induced optical properties, linear versus nonlinear absorption, and static versus dynamic photoresponse, as well as the quasi-particle effect versus the effect. After that, we exemplify typical black phosphorus photonic devices in Section 4. We highlight recent progress in photodetectors covering mid-IR and terahertz wavelength, ultrafast -switching and mode-locking pulse lasers and nanophotonic devices. Finally, we present a summary and outlook of black phosphorus regarding current challenges and future application opportunities in Section 5.
© 2016 Optical Society of America
Full Article | PDF ArticleMore Like This
Todd P. Otanicar, Drew DeJarnette, Yasitha Hewakuruppu, and Robert A. Taylor
Adv. Opt. Photon. 8(3) 541-585 (2016)
S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan
Opt. Express 23(9) 11183-11194 (2015)
Daniel Jaque, Cyrille Richard, Bruno Viana, Kohei Soga, Xiaogang Liu, and Jose García Solé
Adv. Opt. Photon. 8(1) 1-103 (2016)