Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 50,
  • Issue 2,
  • pp. 211-221
  • (1996)

Spectroscopic and Binding Properties of Near-Infrared Tricarbocyanine Dyes to Double-Stranded DNA

Not Accessible

Your library or personal account may give you access

Abstract

The noncovalent binding and spectroscopic properties of several near-infrared tricarbocyanine dyes with respect to sonicated calf-thymus DNA are reported. The dyes investigated were diethylthiatricarbocyanine iodide (DTTCI), diethyloxatricarbocyanine iodide (DOTCI), and 1,1',3,3,3',3'- hexamethylindotricarbocyanine iodide (HITCI), which are cationic and possess absorption maxima at 772, 695, and 750 nm, respectively, in DMSO. In buffered aqueous solutions, these dyes demonstrated extensive ground-state aggregation in aqueous solvents when compared to DMSO. In the presence of double-stranded DNA (dsDNA), the fluorescence emission spectra revealed enhancement ratios of bound-to-free dye ranging from 4.5 for DOTCI to 128 for DTTCI. Spectrophotometric titrations and Scatchard analyses of the dye-dsDNA complexes yielded nonlinear plots, suggestive of possible multiple binding sites on the DNA. Viscometric titrations of the complexes showed increased solution viscosities for DTTCI, consistent with an unraveling and lengthening of the dsDNA upon complexation. Fluorescence lifetime data of the dyedsDNA complexes showed longer lifetimes exhibited by these dyes in the presence of the dsDNA compared with those in solutions with no DNA.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved