Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 57,
  • Issue 12,
  • pp. 1461-1467
  • (2003)

Automated Line-Focused Laser Ablation for Mapping of Inclusions in Stainless Steel

Not Accessible

Your library or personal account may give you access

Abstract

An automated line imaging arrangement for two-dimensional (2D) and three-dimensional (3D) generation of chemical maps of inclusions in stainless steel by laser-induced plasma spectrometry (LIPS) is presented. The plasma was generated in air at atmospheric pressure by focusing a flat-top Nd : YAG laser beam operating at 532 nm to a microline on the sample surface. The emitted light from the microline plasma was projected through an imaging spectrograph onto a charge-coupled device (CCD) detector to generate a spatially and spectrally resolved data set. Compositional distribution maps of inclusion constituents (Mn, Mg, Ca, Al, and Ti) in stainless steel of different grades have been generated. Comparative studies with the point-to-point LIPS mapping method have been performed, resulting in a 51-fold reduction in the number of pulses and analysis time when the microline imaging approach is employed. The results illustrate the capability of microline imaging LIPS for fast-automated acquisition of tomographic maps with spatial resolution of 50 μ m between adjacent craters and 4.8 μm along the microline.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved