Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 63,
  • Issue 2,
  • pp. 192-198
  • (2009)

Surface Treatment Analyses of Car Bearings by Using Laser-Induced Breakdown Spectroscopy

Not Accessible

Your library or personal account may give you access


Determination of surface coating composition is a problem of great importance for industry and production related to the quality control of products and processes. One of the most outstanding aspects of laser-induced breakdown spectroscopy (LIBS) is its unique ability to carry out real-time depth profile analysis. This allows, for instance, the identification of layered coatings composition. In this work we performed depth profile analysis using LIBS to determine the composition of layered surface treatments of car bearings. Laser ablation thresholds for each coating layer were determined by acoustic measurements. Transitions between the different coating layers were also identified by an acoustic method. We developed faster and simpler semi-quantitative procedures to determine the relative composition of alloy surface coatings of car bearings as well as the possibility to characterize in real time these treatments.

PDF Article
More Like This
Laser-induced breakdown spectroscopy in industrial and security applications

Alexander A. Bol'shakov, Jong H. Yoo, Chunyi Liu, John R. Plumer, and Richard E. Russo
Appl. Opt. 49(13) C132-C142 (2010)

Univariate and multivariate analyses of strontium and vanadium in soil by laser-induced breakdown spectroscopy

Cuiping Lu, Min Wang, Liusan Wang, Haiying Hu, and Rujing Wang
Appl. Opt. 58(27) 7510-7516 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access Optica Member Subscription

Select as filters

Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved