Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 75,
  • Issue 12,
  • pp. 1475-1496
  • (2021)

Raman Spectroscopy Coupled with Reflectance Spectroscopy as a Tool for the Characterization of Key Hydrothermal Alteration Minerals in Epithermal Au–Ag Systems: Utility and Implications for Mineral Exploration

Open Access Open Access

Abstract

Raman spectroscopy of fine-grained hydrothermal alteration minerals, and phyllosilicates in particular, presents certain challenges. However, given the increasingly widespread recognition of field portable visible–near infrared–shortwave infrared (Vis-NIR-SWIR) spectroscopy as a valuable tool in the mineral exploration industry, Raman microspectroscopy has promise as an approach for developing detailed complementary information on hydrothermal alteration phases in ore-forming systems. Here we present exemplar high-quality Raman and Vis-NIR-SWIR spectra of four key hydrothermal alteration minerals (pyrophyllite, white mica, chlorite, and alunite) that are common in precious metal epithermal systems, from deposits on the island of Newfoundland, Canada. The results reported here demonstrate that Raman microspectroscopy can accurately characterize pyrophyllite, white mica, chlorite, and alunite and provide details on their compositional variation at the microscale. In particular, spectral differences in the 1000–1150 cm−1 white mica Raman band allows the distinction between low-Tschermak phases (muscovite, paragonite) and phases with higher degrees of Tschermak substitution (phengitic white mica composition). The peak position of the main chlorite Raman band shifts between 683 cm−1 for Mg-rich chlorite and 665 cm−1 for Fe-rich chlorite and can be therefore used for semiquantitative estimation of the Fe2+ content in chlorite. Furthermore, while Vis-NIR-SWIR macrospectroscopy allows the rapid identification of the overall composition of the most abundant hydrothermal alteration mineral in a given sample, Raman microspectroscopy provides an in-depth spectral and chemical characterization of individual mineral grains, preserving the spatial and paragenetic context of each mineral and allowing for the distinction of chemical variation between (and within) different mineral grains. This is particularly useful in the case of alunite, white mica, and chlorite, minerals with extensive solid solution, where microscale characterization can provide information on the alteration zonation useful for mineral exploration and provide insight into mineral deposit genesis.

© 2021 The Author(s)

PDF Article

References

  • View by:

  1. H.E. Frimmel. “Earth's Continental Crustal Gold Endowment” Earth Planet. Sci. Lett. 2008; 267(1–2): 45–55. doi: 10.1016/j.epsl.2007.11.022.
  2. A. Arribas. “Characteristics of High-Sulfidation Epithermal Deposits, and their Relation to Magmatic Fluid”. In: J.F.H. Thompson, editor. Magmas, Fluids, and Ore Deposits. Miner. Assoc. Can. Short Course. (1995). 23: 419–454.
  3. J.W. Hedenquist, E. Izawa, A. Arribas, N.C. White. “Epithermal Gold Deposits: Styles, Characteristics, and Exploration”. Resour. Geol. (1996). 1: 70.
  4. J.W. Hedenquist, A. Arribas, E. González-Urien. “Exploration for Epithermal Gold Deposits”. Rev. Econ. Geol. 2000; 13: 245–277. doi: 10.5382/Rev.13.07.
  5. S.F. Simmons, N.C. White, D.A. John. “Geological Characteristics of Epithermal Precious and Base Metal Deposits”. Econ. Geol. 2005; 100: 485–522. doi: 10.5382/AV100.16.
  6. W.A. Deer, R.A. Howie, J. Zussman. “An Introduction to the Rock-Forming Minerals. Longman, London. (1992). doi: 10.1180/DHZ.
  7. F. Bergaya, G. Lagaly. Handbook of Clay Science. Amsterdam; Boston; Paris: Elsevier, (2013).
  8. J.W. Hedenquist. “Mineralization Associated with Volcanic-Related Hydrothermal Systems in the Circum-Pacific Basin”. Am. Assoc. Pet. Geol. Conference. (1987). Pp. 513–524.
  9. B.R. Berger, P.M. Bethke. “Geology and Geochemistry of Epithermal Systems”. Rev. Econ. Geol. 1985; 2: 298doi: 10.5382/Rev.02.
  10. D.R. Cooke, S.F. Simmons. “Characteristics and Genesis of Epithermal Gold Deposits”. Rev. Econ. Geol. 2000; 13(2): 221–244. doi: 10.5382/Rev.13.06.
  11. C. Arbiol, G.D. Layne, G. Zanoni, B. Segvic. “Characteristics and Genesis of Phyllosilicate Hydrothermal Assemblages from Neoproterozoic Epithermal Au–Ag Mineralization of the Avalon Zone of Newfoundland, Canada”. Appl. Clay Sci. 2021; 202: 105960doi: 10.1016/j.clay.2020.105960.
  12. D.A. Tillick, D.R. Peacor, J.L. Mauk. “Genesis of Dioctahedral Phyllosilicates during Hydrothermal Alteration of Volcanic Rocks: I. The Golden Cross Epithermal Ore Deposit, New Zealand”. Clays Clay Miner. 2001; 49: 126–140. doi: 10.1346/CCMN.2001.0490203.
  13. Y. Yan, D.A. Tillick, D.R. Peacor, S.F. Simmons. “Genesis of Dioctahedral Phyllosilicates during Hydrothermal Alteration of Volcanic Rocks: II. The Broadlands–Ohaaki Hydrothermal System, New Zealand”. Clays Clay Miner. 2001; 49: 141–155. doi: 10.1346/CCMN.2001.0490204.
  14. A. Inoue, A. Meunier, D. Beaufort. “Illite–Smectite Mixed-Layer Minerals in Felsic Volcaniclastic Rocks from Drill Cores, Kakkonda, Japan”. Clays Clay Miner. 2004; 52(1): 66–84. doi: 10.1346/CCMN.2004.0520108.
  15. J. Carrillo-Rosúa, S. Morales-Ruano, I. Esteban-Arispe, P. Fenoll Hach-Alí. “Significance of Phyllosilicate Mineralogy and Mineral Chemistry in an Epithermal Environment. Insights from the Palai–Islica Au–Cu Deposit (Almería, SE Spain)”. Clays Clay Miner. 2009; 57: 1–24. doi: 10.1346/CCMN.2009.0570101.
  16. M.P. Simpson, J.L. Mauk. “Hydrothermal Alteration and Veins at the Epithermal Au–Ag Deposits and Prospects of the Waitekauri Area, Hauraki Goldfield, New Zealand”. Econ. Geol. 2011; 106(6): 945–973. doi: 10.2113/econgeo.106.6.945.
  17. A.J.B. Thompson, P.L. Hauff, A.J. Robitaille. “Alteration Mapping in Exploration: Application of Short-Wave Infrared (SWIR) Spectroscopy”. Soc. Econ. Geol. News. 1999; 39: 15–27.
  18. A. Kerr, H. Rafuse, G. Sparkes, J. Hinchey, H. Sandeman. “Visible/Infrared Spectroscopy (VIRS) as a Research Tool in Economic Geology: Background and Pilot Studies from Newfoundland and Labrador”. Current Res. (2011). Geological Survey Report 11–1: 145–166.
  19. G.W. Sparkes, G.R. Dunning. “Late Neoproterozoic Epithermal Alteration and Mineralization in the Western Avalon Zone: A Summary of Mineralogical Investigations and New U/Pb Geochronological Results”. Current Res. (2014). Geological Survey Report 14–1: 99–128.
  20. R. Wang, T. Cudahy, C. Laukamp, J.L. Walshe, et al. “White Mica as a Hyperspectral Tool in Exploration for the Sunrise Dam and Kanowna Belle Gold Deposits, Western Australia”. Econ. Geol. 2017; 112(5): 1153–1176. doi: 10.5382/econgeo.2017.4505.
  21. L.C. Neal, J.J. Wilkinson, P.J. Mason, Z. Chang. “Spectral Characteristics of Propylitic Alteration Minerals as a Vectoring Tool for Porphyry Copper Deposits”. J. Geochem. Explor. 2018; 184(A): 179–198. doi: 10.1016/j.gexplo.2017.10.019.
  22. A. Tlili, D. Smith, J. Beny, H. Boyer. “A Raman Microprobe Study of Natural Micas”. Mineral. Mag. 1989; 53(370): 165–179. doi: 10.1180/minmag.1989.053.370.04.
  23. R.L. Frost. “Fourier Transform Raman Spectroscopy of Kaolinite, Dickite, and Halloysite”. Clays Clay Miner. 1995; 43: 191–195. doi: 10.1346/CCMN.1995.0430206.
  24. R.L. Frost, L. Rintoul. “Lattice Vibrations of Montmorillonite: An FT Raman and X-ray Diffraction Study”. Appl. Clay Sci. 1996; 11(2–4): 171–183. doi: 10.1016/S0169-1317(96)00017-8.
  25. R.L. Frost. “The Structure of the Kaolinite Minerals: A FT–Raman Study”. Clay Miner. 1997; 32(1): 65–77. doi: 10.1180/claymin.1997.032.1.08.
  26. R.L. Frost, H.F. Shurvell. “Raman Microprobe Spectroscopy of Halloysite”. Clays Clay Miner. 1997; 45(1): 68–72. doi: 10.1180/claymin.1997.032.1.08.
  27. R.L. Frost, S.J. Van der Gaast. “Kaolinite Hydroxyls: A Raman Microscopy Study”. Clay Miner. 1997; 32(3): 471–484. doi: 10.1180/claymin.1997.032.3.09.
  28. V.C. Farmer. “Differing Effects of Particle Size and Shape in the Infrared and Raman Spectra of Kaolinite”. Clay Miner. 1998; 33(4): 601–604. doi: 10.1180/claymin.1998.033.4.07.
  29. R.L. Frost, J.T. Kloprogge. “Raman Spectroscopy of Nontronites”. Appl. Spectrosc. 2000; 54(3): 402–405. doi: 10.1366/0003702001949483.
  30. R.L. Frost, S. Bahfenne, J. Čejka, J. Sejkora, et al. “Raman and Infrared Study of Phyllosilicates Containing Heavy Metals (Sb, Bi): Bismutoferrite and Chapmanite”. J. Raman Spectrosc. 2010; 41(7): 814–819. doi: 10.1002/jrs.2512.
  31. W.B. White. “Order–Disorder Effects” In: V.C. Farmer, editor. The Infrared Spectra of Minerals. London: Mineralogical Society of Great Britain and Ireland, 1974. Vol. 4, Pp. 87–110. doi: 10.1180/mono-4.
  32. A. Wang, J.J. Freeman, B.L. Jolliff. “Understanding the Raman Spectral Features of Phyllosilicates”. J. Raman Spectrosc. 2015; 46: 829–845. doi: 10.1002/jrs.4680.
  33. J.L. Bishop, E. Murad. “Characterization of minerals and biogeochemical markers on Mars: A Raman and IR spectroscopic study of montmorillonite”. J. Raman Spectrosc. 2004; 35: 480–486. doi: 10.1002/jrs.1173.
  34. W.P. Gates, J.T. Kloprogge, J. Madejová, F. Bergaya. Infrared and Raman Spectroscopies of Clay Minerals. Amsterdam: Elsevier, 2017.
  35. Ph. Gillet, J.A. Barrat, E. Deloule, M. Wadhwa, et al. “Aqueous Alteration in the Northwest Africa 817 (NWA 817) Martian Meteorite”. Earth Planet. Sci. Lett. 2002; 203(1): 431–444. doi: 10.1016/S0012-821X(02)00835-X.
  36. R. Hochleitner, N. Tarcea, G. Simon, W. Kiefer, J. Popp. “Micro-Raman Spectroscopy: A Valuable Tool for the Investigation of Extraterrestrial Material”. J. Raman Spectrosc. 2004. 35(6): 515–518. doi: 10.1002/jrs.1190.
  37. A. Wang, K. Kuebler, B. Jolliff, L.A. Haskin. “Mineralogy of a Martial Meteorite as Determined by Raman Spectroscopy”. J. Raman Spectrosc. 2004; 35(6): 504–514. doi: 10.1002/jrs.1175.
  38. B.J. Saikia, G. Parthasarathy, R.R. Borah, R. Borthakur. “Raman and FTIR Spectroscopic Evaluation of Clay Minerals and Estimation of Metal Contaminations in Natural Deposition of Surface Sediments from Brahmaputra River”. Int. J. Geosci. 2016; 7: 873–883. doi: 10.4236/ijg.2016.77064.
  39. V. Košařová D. Hradil, I. Němec, P. Bezdička, V. Kanickýa. “Microanalysis of Clay-Based Pigments in Painted Artworks by the Means of Raman Spectroscopy”. J. Raman Spectrosc. 2013; 44(11): 1570–1577. doi: 10.1002/jrs.4381.
  40. J.L. Bishop, E.Z.N. Dobrea, N.K. McKeown, M. Parente, et al. “Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars”. Science. 2008; 321(5890): 830–833. doi: 10.1126/science.1159699.
  41. J. Cuadros, J.R. Michalski, V. Dekov, J.L. Bishop. “Octahedral Chemistry of 2:1 Clay Minerals and Hydroxyl Band Position in the Near-Infrared: Application to Mars”. Amer. Mineral. 2016; 101(3): 554–563. doi: 10.2138/am-2016-5366.
  42. J.L. Bishop, E. Murad. “The Visible and Infrared Spectral Properties of Jarosite and Alunite”. Am. Mineral. 2005; 90(7): 1100–1107. doi: 10.2138/am.(2005).1700.
  43. E.F. Duke. “Near Infrared Spectra of Muscovite, Tschermak Substitution, and Metamorphic Reaction Progress: Implications for Remote Sensing”. Geology. 1994; 22(7): 621–624. doi: 10.1130/0091-7613(1994)022<0621:NISOMT>2.3.CO;2.
  44. A.C. Prieto, J. Dubessy, M. Cathelineau. “Structure–Composition Relationships in Trioctahedral Chlorites; a Vibrational Spectroscopy Study”. Clays Clay Miner. 1991; 39: 531–539. doi: 10.1346/CCMN.1991.0390508.
  45. R.N. Clark, T.V. King, M. Klejwa, G.A. Swayze, N. Vergo. “High Spectral Resolution Reflectance Spectroscopy of Minerals”. J. Geophys. Res. Sol. Earth. 1990; 95(B8): 12653–12680. doi: 10.1029/JB095iB08p12653.
  46. W. Herrmann, M. Blake, M. Doyle, D. Huston, et al. “Short Wavelength Infrared (SWIR) Spectral Analysis of Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland”. Econ. Geol. 2001; 96(5): 939–955. doi: 10.2113/gsecongeo.96.5.939.
  47. E. Loh. “Optical Vibrations in Sheet Silicates”. J. Phys. C: Solid State Phys. 1973; 6(6): 1091–1104. doi: 10.1088/0022-3719/6/6/022.
  48. S. Zhai, E. Ito, A. Yoneda. “Effects of Pre-Heated Pyrophyllite Gaskets on High-Pressure Generation in the Kawai-Type Multi-Anvil Experiments”. High Press. Res. 2008; 28(3): 265–271. doi: 10.1080/08957950802454050.
  49. V.C. Farmer. “The Infrared Spectra of Minerals”. Mineralogical Society of Great Britain and Ireland. (1974). Monograph 4. doi: 10.1180/mono-4.
  50. J.T. Kloprogge, R.L. Frost. “An Infrared Emission Spectroscopic Study of Synthetic and Natural Pyrophyllite”. Neues Jb. Miner. Abh. 1999; 2: 62–74.
  51. L. Wang, M. Zhang, S.A.T. Redfern, Z. Zhang. “Dehydroxylation and Transformations of the 2:1 Phyllosilicate Pyrophyllite at Elevated Temperatures: An Infrared Spectroscopic Study”. Clays Clay Miner. 2002; 50(2): 272–283. doi: 10.1346/000986002760832874.
  52. S. Lantenois, J.M. Beny, F. Muller, R. Champallier. “Integration of Fe in Natural and Synthetic Al-Pyrophyllites: An Infrared Spectroscopic Study”. Clay Miner. 2007; 42(1): 129–141. doi: 10.1180/claymin.2007.042.1.09.
  53. H. Li, L. Zhang, A.G. Christy. “The Correlation Between Raman Spectra and the Mineral Composition of Muscovite and Phengite”. In: L.F. Dobrzhinetskaya, S.W. Faryad, S. Wallis, S. Cuthbert, editors. Ultrahigh-Pressure Metamorphism: 25 Years After the Discovery of Coesite and Diamond. London: Elsevier, (2011). Chap. 7, Pp. 187-212. doi: 10.1016/B978-0-12-385144-4.00006-0.
  54. K. Omori. “Infrared Diffraction and the Far Infrared Spectra of Anhydrous Sulfates”. Mineral. J. 1968; 5(5): 334–354. doi: 10.2465/minerj(1953).5.334.
  55. A. Wang, J.J. Freeman, B.L. Jolliff, I.M. Chou. “Sulfates on Mars: A Systematic Raman Spectroscopic Study of Hydration States of Magnesium Sulfates”. Geochim. Cosmochim. Acta. 2006; 70(24): 6118–6135. doi: 10.1016/j.gca.2006.05.022.
  56. N. Buzgar, A. Buzatu, I.V. Sanislav. “The Raman Study of Certain Sulfates”. Analele Stiintifice de Universitatii A.I. Cuza din Iasi. Sect. 2, Geologie. 2009; 55: 5–23.
  57. C. Lerouge, C. Beny, C. Fléhoc, C. Guerrot, et al. “Constraints of Stable Isotopes, Raman Spectrometry on the Formation of the Advanced Argillic Alteration of the Breznik Epithermal Au Occurrence in Bulgaria: Impact of Weathering”. Paper presented at: 9th Biennial SGA Meeting 2007. Dublin, Ireland; August 19–23 (2007).
  58. N. Maubec, A. Lahfid, C. Lerouge, W.K. Michel. “Characterization of Alunite Supergroup Minerals by Raman Spectroscopy”. Spectrochim. Acta, Part A. 2012; 96: 925–939. doi: 10.1016/j.saa.2012.07.094.
  59. R.L. Frost, R.A. Wills, M.L. Weier, W. Martens, J.T. Kloprogge. “A Raman Spectroscopic Study of Alunites”. J. Mol. Struct. 2006; 785(1–3): 123–132. doi: 10.1016/j.molstruc.2005.10.003.
  60. D.K. Breitinger, R. Kriegelstein, A. Bogner, R.G. Schwab, et al. “Vibrational Spectra of Synthetic Minerals of the Alunite and Crandallite Type”. J. Mol. Struct. 1997; 408–409: 287–290. doi: 10.1016/S0022-2860(96)09627-5.
  61. W.W. Rudolph, R. Mason. “Study of Aqueous Al2(SO4)3 Solution Under Hydrothermal Conditions: Sulfate Ion Pairing, Hydrolysis, and Formation of Hydronium Alunite”. J. Solution Chem. 2001; 30: 527–548. doi: 10.1023/A:1010334818580.
  62. M. Toumi, A. Tlili. “Rietveld Refinement and Vibrational Spectroscopic Study of Alunite from El Gnater, Central Tunisia”. J. Russ, J. Inorg. Chem. 2008; 53: 1845–1853. doi: 10.1134/S0036023608120048.
  63. H. Williams. “Appalachian Orogen in Canada”. Can. J. Earth Sci. 1979; 16(3): 792–807. doi: 10.1139/e79-070.
  64. S.J. O'Brien, B.H. O'Brien, G.R. Dunning, R.D. Tucker. “Late Neoproterozoic Avalonian and Related Peri-Gondwanan Rocks of the Newfoundland Appalachians”. In: R.D. Nance, M.D. Thompson, editors. Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic: Boulder, Colorado. Geol. Soc. Am. Special Paper. 1996; 304: 9–28. doi: 10.1130/0-8137-2304-3.9.
  65. S.J. O'Brien, B. Dubé, C.F. O'Driscoll, J. Mills. “Geological Setting of Gold Mineralization and Related Hydrothermal Alteration in Late Neoproterozoic (Post-640 Ma) Avalonian Rocs of Newfoundland, with a Review of the Coeval Gold Deposits Elsewhere in the Appalachian Avalonian Belt”. Current Res. 1998. Geological Survey Report 98-1: 93–124.
  66. S.J. O'Brien, B. Dubé, C.F. O'Driscoll. “High-Sulphidation, Epithermal-Style Hydrothermal Systems in Late Neoproterozoic Avalonian Rocks on the Burin Peninsula, Newfoundland: Implications for Gold Exploration”. Current Res. 1999. Geological Survey Report 99-1: 275–296.
  67. G.B. Dubé, G.R. Dunning, K. Lauziere. “Geology of the Hope Brook Mine, Newfoundland, Canada: A Preserved Late Proterozoic High-Sulfidation Epithermal Gold Deposit and its Implications for Exploration”. Econ. Geol. 1995; 93: 405–436. doi: 10.2113/gsecongeo.93.4.405.
  68. F. Autefage, J.J. Couderc“Étude du Mécanisme de la Migration du Sodium et du Potassium au Cours de leur Analyse a la Microsonde Électronique”. Bull. Miner. 1980; 103: 623–629.
  69. J.L. Pouchou, F. Pichoir. “A New Model for Quantitative Analyses. I. Application to the Analysis of Homogeneous Samples”. La Recherche Aérospatiale. 1984; 3: 13–38.
  70. J.L. Pouchou, F. Pichoir, “‘PAP' Correction Procedure for Improved Quantitative Microanalysis”. In: J.T. Armstrong, editor. Microbeam Analysis. San Francisco: San Francisco Press, 1985. Pp. 104–106.
  71. J. Etoh, E. Izawa, K. Watanabe, S. Taguchi, R. Sekine. “Bladed Quartz and its Relationship to Gold Mineralization in the Hishikari Low-Sulfidation Epithermal Gold Deposit, Japan”. Econ. Geol. 2002; 97(8): 1841–1851. doi: 10.2113/gsecongeo.97.8.1841.
  72. P.E. Rosenberg, G. Cliff. “The Formation of Pyrophyllite Solid Solutions”. Am. Mineral. 1980; 65: 1214–1219.
  73. N.C. White, J.W. Hedenquist. “Epithermal Gold Deposits: Styles, Characteristics, and Exploration”. SEG Newsletter. 1995; 23(1): 9–13.
  74. G.E. Graham, R.F. Kokaly, K.D. Kelley, T.M. Hoefen, et al. “Application of Imaging Spectroscopy for Mineral Exploration in Alaska: A Study over Porphyry Cu Deposits in the Eastern Alaska Range”. Econ. Geol. 2018; 113(2): 489–510. doi: 10.5382/econgeo.2018.4559.
  75. G. Ferrier, A. Ganas, R. Pope, A.J. Miles. “Prospectivity Mapping for Epithermal Deposits of Western Milos Using a Fuzzy Multi Criteria Evaluation Approach Parameterized by Airborne Hyperspectral Remote Sensing Data”. Geosciences. 2019; 9: 116doi: 10.3390/geosciences9030116.
  76. M.C. Tappert, B. Rivard, D. Giles, R. Tappert, A. Mauger. “The Mineral Chemistry, Near-Infrared, and Mid-Infrared Reflectance Spectroscopy of Phengite from the Olympic Dam IOCG Deposit, South Australia”. Ore Geol. Rev. 2013; 53: 26–38. doi: 10.1016/j.oregeorev.2012.12.006.
  77. S. Zhang, G. Chu, J. Cheng, Y. Zhang, et al. “Short Wavelength Infrared (SWIR) Spectroscopy of Phyllosilicate Minerals from the Tonglushan Cu–Au–Fe Deposit, Eastern China: New Exploration Indicators for Concealed Skarn Orebodies”. Ore Geol. Rev. 2020; 122: 103516doi: 10.1016/j.oregeorev.(2020).103516.
  78. A. Thompson, K. Scott, J. Huntington, K. Yang. “Mapping Mineralogy with Reflectance Spectroscopy: Examples from Volcanogenic Massive Sulfide Deposits”. In: R. Bedell, A.P. Crósta, E. Grunsky, editors. Remote Sensing and Spectral Geology. Rev. Econ. Geol. 2009; 16: 1–16. doi: 10.5382/Rev.16.04.
  79. S. Jones, W. Herrmann, J.B. Gemmell. “Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada”. Econ. Geol. 2005; 100(2): 273–294. doi: 10.2113/gsecongeo.100.2.273.
  80. M.J. Buschette, S.J. Piercey. “Hydrothermal Alteration and Lithogeochemistry of the Boundary Volcanogenic Massive Sulphide Deposit, Central Newfoundland, Canada”. Can. J. Earth Sci. 2016; 53(5): 1–22. doi: 10.1139/cjes-2015-0237.
  81. J. Huang, H. Cheng, J. Han, X. Deng, et al. “Alteration Zonation and Short Wavelength Infrared (SWIR) Characteristics of the Honghai VMS Cu–Zn Deposit, Eastern Tianshan, NW China”. Ore Geol. Rev. 2018; 100: 263–279. doi: 10.1016/j.oregeorev.2017.02.037.
  82. N. Gaillard, A.E. Williams-Jones, J.R. Clark, P. Lypaczewski, et al. “Mica Composition as a Vector to Gold Mineralization: Deciphering Hydrothermal and Metamorphic Effects in the Malartic District, Quebec”. Ore Geol. Rev. 2018; 95: 789–820. doi: 10.1016/j.oregeorev.2018.02.009.
  83. A. Inoue, S. Inoué, M. Utada. “Application of Chlorite Thermometry to Estimation of Formation Temperature and Redox Conditions”. Clay Miner. 2018; 53(2): 143–158. doi: 10.1180/clm.2018.10.
  84. O. Vidal, T. Parra, F. Trotet. “A Thermodynamic Model for Fe–Mg Aluminous Chlorite Using Data from Phase Equilibrium Experiments and Natural Pelitic Assemblages in the 100° to 600°, 1 to 25 kb range”. Am. J. Sci. 2001; 301(6): 557–592. doi: 10.2475/ajs.301.6.557.
  85. R.E. Stoffregen, C.N. Alpers, J.L. Jambor. “Alunite–Jarosite Crystallography, Thermodynamics, and Geochronology”. Rev. Mineral. Geochem. 2000; 40(1): 453–479. doi: 10.2138/rmg.2000.40.9.
  86. C.L. Deyell, G.M. Dipple. “Equilibrium Mineral-Fluid Calculations and Their Application to the Solid Solution Between Alunite and Natroalunite in the El Indio-Pascua Belt of Chile and Argentina”. Chem. Geol. 2005; 215(1–4): 219–234. doi: 10.1016/j.chemgeo.2004.06.039.
  87. R.H. Sillitoe. “Porphyry Copper Systems”. Econ. Geol. 2010; 105(1): 3–41. doi: 10.2113/gsecongeo.105.1.3.

2021 (1)

C. Arbiol, G.D. Layne, G. Zanoni, B. Segvic. “Characteristics and Genesis of Phyllosilicate Hydrothermal Assemblages from Neoproterozoic Epithermal Au–Ag Mineralization of the Avalon Zone of Newfoundland, Canada”. Appl. Clay Sci. 2021; 202: 105960doi: 10.1016/j.clay.2020.105960.

2020 (1)

S. Zhang, G. Chu, J. Cheng, Y. Zhang, et al. “Short Wavelength Infrared (SWIR) Spectroscopy of Phyllosilicate Minerals from the Tonglushan Cu–Au–Fe Deposit, Eastern China: New Exploration Indicators for Concealed Skarn Orebodies”. Ore Geol. Rev. 2020; 122: 103516doi: 10.1016/j.oregeorev.(2020).103516.

2019 (1)

G. Ferrier, A. Ganas, R. Pope, A.J. Miles. “Prospectivity Mapping for Epithermal Deposits of Western Milos Using a Fuzzy Multi Criteria Evaluation Approach Parameterized by Airborne Hyperspectral Remote Sensing Data”. Geosciences. 2019; 9: 116doi: 10.3390/geosciences9030116.

2018 (5)

G.E. Graham, R.F. Kokaly, K.D. Kelley, T.M. Hoefen, et al. “Application of Imaging Spectroscopy for Mineral Exploration in Alaska: A Study over Porphyry Cu Deposits in the Eastern Alaska Range”. Econ. Geol. 2018; 113(2): 489–510. doi: 10.5382/econgeo.2018.4559.

J. Huang, H. Cheng, J. Han, X. Deng, et al. “Alteration Zonation and Short Wavelength Infrared (SWIR) Characteristics of the Honghai VMS Cu–Zn Deposit, Eastern Tianshan, NW China”. Ore Geol. Rev. 2018; 100: 263–279. doi: 10.1016/j.oregeorev.2017.02.037.

N. Gaillard, A.E. Williams-Jones, J.R. Clark, P. Lypaczewski, et al. “Mica Composition as a Vector to Gold Mineralization: Deciphering Hydrothermal and Metamorphic Effects in the Malartic District, Quebec”. Ore Geol. Rev. 2018; 95: 789–820. doi: 10.1016/j.oregeorev.2018.02.009.

A. Inoue, S. Inoué, M. Utada. “Application of Chlorite Thermometry to Estimation of Formation Temperature and Redox Conditions”. Clay Miner. 2018; 53(2): 143–158. doi: 10.1180/clm.2018.10.

L.C. Neal, J.J. Wilkinson, P.J. Mason, Z. Chang. “Spectral Characteristics of Propylitic Alteration Minerals as a Vectoring Tool for Porphyry Copper Deposits”. J. Geochem. Explor. 2018; 184(A): 179–198. doi: 10.1016/j.gexplo.2017.10.019.

2017 (1)

R. Wang, T. Cudahy, C. Laukamp, J.L. Walshe, et al. “White Mica as a Hyperspectral Tool in Exploration for the Sunrise Dam and Kanowna Belle Gold Deposits, Western Australia”. Econ. Geol. 2017; 112(5): 1153–1176. doi: 10.5382/econgeo.2017.4505.

2016 (3)

J. Cuadros, J.R. Michalski, V. Dekov, J.L. Bishop. “Octahedral Chemistry of 2:1 Clay Minerals and Hydroxyl Band Position in the Near-Infrared: Application to Mars”. Amer. Mineral. 2016; 101(3): 554–563. doi: 10.2138/am-2016-5366.

B.J. Saikia, G. Parthasarathy, R.R. Borah, R. Borthakur. “Raman and FTIR Spectroscopic Evaluation of Clay Minerals and Estimation of Metal Contaminations in Natural Deposition of Surface Sediments from Brahmaputra River”. Int. J. Geosci. 2016; 7: 873–883. doi: 10.4236/ijg.2016.77064.

M.J. Buschette, S.J. Piercey. “Hydrothermal Alteration and Lithogeochemistry of the Boundary Volcanogenic Massive Sulphide Deposit, Central Newfoundland, Canada”. Can. J. Earth Sci. 2016; 53(5): 1–22. doi: 10.1139/cjes-2015-0237.

2015 (1)

A. Wang, J.J. Freeman, B.L. Jolliff. “Understanding the Raman Spectral Features of Phyllosilicates”. J. Raman Spectrosc. 2015; 46: 829–845. doi: 10.1002/jrs.4680.

2013 (2)

V. Košařová D. Hradil, I. Němec, P. Bezdička, V. Kanickýa. “Microanalysis of Clay-Based Pigments in Painted Artworks by the Means of Raman Spectroscopy”. J. Raman Spectrosc. 2013; 44(11): 1570–1577. doi: 10.1002/jrs.4381.

M.C. Tappert, B. Rivard, D. Giles, R. Tappert, A. Mauger. “The Mineral Chemistry, Near-Infrared, and Mid-Infrared Reflectance Spectroscopy of Phengite from the Olympic Dam IOCG Deposit, South Australia”. Ore Geol. Rev. 2013; 53: 26–38. doi: 10.1016/j.oregeorev.2012.12.006.

2012 (1)

N. Maubec, A. Lahfid, C. Lerouge, W.K. Michel. “Characterization of Alunite Supergroup Minerals by Raman Spectroscopy”. Spectrochim. Acta, Part A. 2012; 96: 925–939. doi: 10.1016/j.saa.2012.07.094.

2011 (1)

M.P. Simpson, J.L. Mauk. “Hydrothermal Alteration and Veins at the Epithermal Au–Ag Deposits and Prospects of the Waitekauri Area, Hauraki Goldfield, New Zealand”. Econ. Geol. 2011; 106(6): 945–973. doi: 10.2113/econgeo.106.6.945.

2010 (2)

R.L. Frost, S. Bahfenne, J. Čejka, J. Sejkora, et al. “Raman and Infrared Study of Phyllosilicates Containing Heavy Metals (Sb, Bi): Bismutoferrite and Chapmanite”. J. Raman Spectrosc. 2010; 41(7): 814–819. doi: 10.1002/jrs.2512.

R.H. Sillitoe. “Porphyry Copper Systems”. Econ. Geol. 2010; 105(1): 3–41. doi: 10.2113/gsecongeo.105.1.3.

2009 (3)

A. Thompson, K. Scott, J. Huntington, K. Yang. “Mapping Mineralogy with Reflectance Spectroscopy: Examples from Volcanogenic Massive Sulfide Deposits”. In: R. Bedell, A.P. Crósta, E. Grunsky, editors. Remote Sensing and Spectral Geology. Rev. Econ. Geol. 2009; 16: 1–16. doi: 10.5382/Rev.16.04.

N. Buzgar, A. Buzatu, I.V. Sanislav. “The Raman Study of Certain Sulfates”. Analele Stiintifice de Universitatii A.I. Cuza din Iasi. Sect. 2, Geologie. 2009; 55: 5–23.

J. Carrillo-Rosúa, S. Morales-Ruano, I. Esteban-Arispe, P. Fenoll Hach-Alí. “Significance of Phyllosilicate Mineralogy and Mineral Chemistry in an Epithermal Environment. Insights from the Palai–Islica Au–Cu Deposit (Almería, SE Spain)”. Clays Clay Miner. 2009; 57: 1–24. doi: 10.1346/CCMN.2009.0570101.

2008 (4)

H.E. Frimmel. “Earth's Continental Crustal Gold Endowment” Earth Planet. Sci. Lett. 2008; 267(1–2): 45–55. doi: 10.1016/j.epsl.2007.11.022.

J.L. Bishop, E.Z.N. Dobrea, N.K. McKeown, M. Parente, et al. “Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars”. Science. 2008; 321(5890): 830–833. doi: 10.1126/science.1159699.

M. Toumi, A. Tlili. “Rietveld Refinement and Vibrational Spectroscopic Study of Alunite from El Gnater, Central Tunisia”. J. Russ, J. Inorg. Chem. 2008; 53: 1845–1853. doi: 10.1134/S0036023608120048.

S. Zhai, E. Ito, A. Yoneda. “Effects of Pre-Heated Pyrophyllite Gaskets on High-Pressure Generation in the Kawai-Type Multi-Anvil Experiments”. High Press. Res. 2008; 28(3): 265–271. doi: 10.1080/08957950802454050.

2007 (1)

S. Lantenois, J.M. Beny, F. Muller, R. Champallier. “Integration of Fe in Natural and Synthetic Al-Pyrophyllites: An Infrared Spectroscopic Study”. Clay Miner. 2007; 42(1): 129–141. doi: 10.1180/claymin.2007.042.1.09.

2006 (2)

R.L. Frost, R.A. Wills, M.L. Weier, W. Martens, J.T. Kloprogge. “A Raman Spectroscopic Study of Alunites”. J. Mol. Struct. 2006; 785(1–3): 123–132. doi: 10.1016/j.molstruc.2005.10.003.

A. Wang, J.J. Freeman, B.L. Jolliff, I.M. Chou. “Sulfates on Mars: A Systematic Raman Spectroscopic Study of Hydration States of Magnesium Sulfates”. Geochim. Cosmochim. Acta. 2006; 70(24): 6118–6135. doi: 10.1016/j.gca.2006.05.022.

2005 (4)

S. Jones, W. Herrmann, J.B. Gemmell. “Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada”. Econ. Geol. 2005; 100(2): 273–294. doi: 10.2113/gsecongeo.100.2.273.

C.L. Deyell, G.M. Dipple. “Equilibrium Mineral-Fluid Calculations and Their Application to the Solid Solution Between Alunite and Natroalunite in the El Indio-Pascua Belt of Chile and Argentina”. Chem. Geol. 2005; 215(1–4): 219–234. doi: 10.1016/j.chemgeo.2004.06.039.

J.L. Bishop, E. Murad. “The Visible and Infrared Spectral Properties of Jarosite and Alunite”. Am. Mineral. 2005; 90(7): 1100–1107. doi: 10.2138/am.(2005).1700.

S.F. Simmons, N.C. White, D.A. John. “Geological Characteristics of Epithermal Precious and Base Metal Deposits”. Econ. Geol. 2005; 100: 485–522. doi: 10.5382/AV100.16.

2004 (3)

A. Inoue, A. Meunier, D. Beaufort. “Illite–Smectite Mixed-Layer Minerals in Felsic Volcaniclastic Rocks from Drill Cores, Kakkonda, Japan”. Clays Clay Miner. 2004; 52(1): 66–84. doi: 10.1346/CCMN.2004.0520108.

A. Wang, K. Kuebler, B. Jolliff, L.A. Haskin. “Mineralogy of a Martial Meteorite as Determined by Raman Spectroscopy”. J. Raman Spectrosc. 2004; 35(6): 504–514. doi: 10.1002/jrs.1175.

J.L. Bishop, E. Murad. “Characterization of minerals and biogeochemical markers on Mars: A Raman and IR spectroscopic study of montmorillonite”. J. Raman Spectrosc. 2004; 35: 480–486. doi: 10.1002/jrs.1173.

2002 (3)

Ph. Gillet, J.A. Barrat, E. Deloule, M. Wadhwa, et al. “Aqueous Alteration in the Northwest Africa 817 (NWA 817) Martian Meteorite”. Earth Planet. Sci. Lett. 2002; 203(1): 431–444. doi: 10.1016/S0012-821X(02)00835-X.

L. Wang, M. Zhang, S.A.T. Redfern, Z. Zhang. “Dehydroxylation and Transformations of the 2:1 Phyllosilicate Pyrophyllite at Elevated Temperatures: An Infrared Spectroscopic Study”. Clays Clay Miner. 2002; 50(2): 272–283. doi: 10.1346/000986002760832874.

J. Etoh, E. Izawa, K. Watanabe, S. Taguchi, R. Sekine. “Bladed Quartz and its Relationship to Gold Mineralization in the Hishikari Low-Sulfidation Epithermal Gold Deposit, Japan”. Econ. Geol. 2002; 97(8): 1841–1851. doi: 10.2113/gsecongeo.97.8.1841.

2001 (5)

W.W. Rudolph, R. Mason. “Study of Aqueous Al2(SO4)3 Solution Under Hydrothermal Conditions: Sulfate Ion Pairing, Hydrolysis, and Formation of Hydronium Alunite”. J. Solution Chem. 2001; 30: 527–548. doi: 10.1023/A:1010334818580.

O. Vidal, T. Parra, F. Trotet. “A Thermodynamic Model for Fe–Mg Aluminous Chlorite Using Data from Phase Equilibrium Experiments and Natural Pelitic Assemblages in the 100° to 600°, 1 to 25 kb range”. Am. J. Sci. 2001; 301(6): 557–592. doi: 10.2475/ajs.301.6.557.

W. Herrmann, M. Blake, M. Doyle, D. Huston, et al. “Short Wavelength Infrared (SWIR) Spectral Analysis of Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland”. Econ. Geol. 2001; 96(5): 939–955. doi: 10.2113/gsecongeo.96.5.939.

D.A. Tillick, D.R. Peacor, J.L. Mauk. “Genesis of Dioctahedral Phyllosilicates during Hydrothermal Alteration of Volcanic Rocks: I. The Golden Cross Epithermal Ore Deposit, New Zealand”. Clays Clay Miner. 2001; 49: 126–140. doi: 10.1346/CCMN.2001.0490203.

Y. Yan, D.A. Tillick, D.R. Peacor, S.F. Simmons. “Genesis of Dioctahedral Phyllosilicates during Hydrothermal Alteration of Volcanic Rocks: II. The Broadlands–Ohaaki Hydrothermal System, New Zealand”. Clays Clay Miner. 2001; 49: 141–155. doi: 10.1346/CCMN.2001.0490204.

2000 (4)

D.R. Cooke, S.F. Simmons. “Characteristics and Genesis of Epithermal Gold Deposits”. Rev. Econ. Geol. 2000; 13(2): 221–244. doi: 10.5382/Rev.13.06.

J.W. Hedenquist, A. Arribas, E. González-Urien. “Exploration for Epithermal Gold Deposits”. Rev. Econ. Geol. 2000; 13: 245–277. doi: 10.5382/Rev.13.07.

R.L. Frost, J.T. Kloprogge. “Raman Spectroscopy of Nontronites”. Appl. Spectrosc. 2000; 54(3): 402–405. doi: 10.1366/0003702001949483.

R.E. Stoffregen, C.N. Alpers, J.L. Jambor. “Alunite–Jarosite Crystallography, Thermodynamics, and Geochronology”. Rev. Mineral. Geochem. 2000; 40(1): 453–479. doi: 10.2138/rmg.2000.40.9.

1999 (2)

J.T. Kloprogge, R.L. Frost. “An Infrared Emission Spectroscopic Study of Synthetic and Natural Pyrophyllite”. Neues Jb. Miner. Abh. 1999; 2: 62–74.

A.J.B. Thompson, P.L. Hauff, A.J. Robitaille. “Alteration Mapping in Exploration: Application of Short-Wave Infrared (SWIR) Spectroscopy”. Soc. Econ. Geol. News. 1999; 39: 15–27.

1998 (1)

V.C. Farmer. “Differing Effects of Particle Size and Shape in the Infrared and Raman Spectra of Kaolinite”. Clay Miner. 1998; 33(4): 601–604. doi: 10.1180/claymin.1998.033.4.07.

1997 (4)

R.L. Frost. “The Structure of the Kaolinite Minerals: A FT–Raman Study”. Clay Miner. 1997; 32(1): 65–77. doi: 10.1180/claymin.1997.032.1.08.

R.L. Frost, H.F. Shurvell. “Raman Microprobe Spectroscopy of Halloysite”. Clays Clay Miner. 1997; 45(1): 68–72. doi: 10.1180/claymin.1997.032.1.08.

R.L. Frost, S.J. Van der Gaast. “Kaolinite Hydroxyls: A Raman Microscopy Study”. Clay Miner. 1997; 32(3): 471–484. doi: 10.1180/claymin.1997.032.3.09.

D.K. Breitinger, R. Kriegelstein, A. Bogner, R.G. Schwab, et al. “Vibrational Spectra of Synthetic Minerals of the Alunite and Crandallite Type”. J. Mol. Struct. 1997; 408–409: 287–290. doi: 10.1016/S0022-2860(96)09627-5.

1996 (2)

S.J. O'Brien, B.H. O'Brien, G.R. Dunning, R.D. Tucker. “Late Neoproterozoic Avalonian and Related Peri-Gondwanan Rocks of the Newfoundland Appalachians”. In: R.D. Nance, M.D. Thompson, editors. Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic: Boulder, Colorado. Geol. Soc. Am. Special Paper. 1996; 304: 9–28. doi: 10.1130/0-8137-2304-3.9.

R.L. Frost, L. Rintoul. “Lattice Vibrations of Montmorillonite: An FT Raman and X-ray Diffraction Study”. Appl. Clay Sci. 1996; 11(2–4): 171–183. doi: 10.1016/S0169-1317(96)00017-8.

1995 (3)

R.L. Frost. “Fourier Transform Raman Spectroscopy of Kaolinite, Dickite, and Halloysite”. Clays Clay Miner. 1995; 43: 191–195. doi: 10.1346/CCMN.1995.0430206.

G.B. Dubé, G.R. Dunning, K. Lauziere. “Geology of the Hope Brook Mine, Newfoundland, Canada: A Preserved Late Proterozoic High-Sulfidation Epithermal Gold Deposit and its Implications for Exploration”. Econ. Geol. 1995; 93: 405–436. doi: 10.2113/gsecongeo.93.4.405.

N.C. White, J.W. Hedenquist. “Epithermal Gold Deposits: Styles, Characteristics, and Exploration”. SEG Newsletter. 1995; 23(1): 9–13.

1994 (1)

E.F. Duke. “Near Infrared Spectra of Muscovite, Tschermak Substitution, and Metamorphic Reaction Progress: Implications for Remote Sensing”. Geology. 1994; 22(7): 621–624. doi: 10.1130/0091-7613(1994)022<0621:NISOMT>2.3.CO;2.

1991 (1)

A.C. Prieto, J. Dubessy, M. Cathelineau. “Structure–Composition Relationships in Trioctahedral Chlorites; a Vibrational Spectroscopy Study”. Clays Clay Miner. 1991; 39: 531–539. doi: 10.1346/CCMN.1991.0390508.

1990 (1)

R.N. Clark, T.V. King, M. Klejwa, G.A. Swayze, N. Vergo. “High Spectral Resolution Reflectance Spectroscopy of Minerals”. J. Geophys. Res. Sol. Earth. 1990; 95(B8): 12653–12680. doi: 10.1029/JB095iB08p12653.

1989 (1)

A. Tlili, D. Smith, J. Beny, H. Boyer. “A Raman Microprobe Study of Natural Micas”. Mineral. Mag. 1989; 53(370): 165–179. doi: 10.1180/minmag.1989.053.370.04.

1985 (1)

B.R. Berger, P.M. Bethke. “Geology and Geochemistry of Epithermal Systems”. Rev. Econ. Geol. 1985; 2: 298doi: 10.5382/Rev.02.

1984 (1)

J.L. Pouchou, F. Pichoir. “A New Model for Quantitative Analyses. I. Application to the Analysis of Homogeneous Samples”. La Recherche Aérospatiale. 1984; 3: 13–38.

1980 (2)

F. Autefage, J.J. Couderc“Étude du Mécanisme de la Migration du Sodium et du Potassium au Cours de leur Analyse a la Microsonde Électronique”. Bull. Miner. 1980; 103: 623–629.

P.E. Rosenberg, G. Cliff. “The Formation of Pyrophyllite Solid Solutions”. Am. Mineral. 1980; 65: 1214–1219.

1979 (1)

H. Williams. “Appalachian Orogen in Canada”. Can. J. Earth Sci. 1979; 16(3): 792–807. doi: 10.1139/e79-070.

1973 (1)

E. Loh. “Optical Vibrations in Sheet Silicates”. J. Phys. C: Solid State Phys. 1973; 6(6): 1091–1104. doi: 10.1088/0022-3719/6/6/022.

1968 (1)

K. Omori. “Infrared Diffraction and the Far Infrared Spectra of Anhydrous Sulfates”. Mineral. J. 1968; 5(5): 334–354. doi: 10.2465/minerj(1953).5.334.

Alpers, C.N.

R.E. Stoffregen, C.N. Alpers, J.L. Jambor. “Alunite–Jarosite Crystallography, Thermodynamics, and Geochronology”. Rev. Mineral. Geochem. 2000; 40(1): 453–479. doi: 10.2138/rmg.2000.40.9.

Arbiol, C.

C. Arbiol, G.D. Layne, G. Zanoni, B. Segvic. “Characteristics and Genesis of Phyllosilicate Hydrothermal Assemblages from Neoproterozoic Epithermal Au–Ag Mineralization of the Avalon Zone of Newfoundland, Canada”. Appl. Clay Sci. 2021; 202: 105960doi: 10.1016/j.clay.2020.105960.

Arribas, A.

J.W. Hedenquist, A. Arribas, E. González-Urien. “Exploration for Epithermal Gold Deposits”. Rev. Econ. Geol. 2000; 13: 245–277. doi: 10.5382/Rev.13.07.

Autefage, F.

F. Autefage, J.J. Couderc“Étude du Mécanisme de la Migration du Sodium et du Potassium au Cours de leur Analyse a la Microsonde Électronique”. Bull. Miner. 1980; 103: 623–629.

Bahfenne, S.

R.L. Frost, S. Bahfenne, J. Čejka, J. Sejkora, et al. “Raman and Infrared Study of Phyllosilicates Containing Heavy Metals (Sb, Bi): Bismutoferrite and Chapmanite”. J. Raman Spectrosc. 2010; 41(7): 814–819. doi: 10.1002/jrs.2512.

Barrat, J.A.

Ph. Gillet, J.A. Barrat, E. Deloule, M. Wadhwa, et al. “Aqueous Alteration in the Northwest Africa 817 (NWA 817) Martian Meteorite”. Earth Planet. Sci. Lett. 2002; 203(1): 431–444. doi: 10.1016/S0012-821X(02)00835-X.

Beaufort, D.

A. Inoue, A. Meunier, D. Beaufort. “Illite–Smectite Mixed-Layer Minerals in Felsic Volcaniclastic Rocks from Drill Cores, Kakkonda, Japan”. Clays Clay Miner. 2004; 52(1): 66–84. doi: 10.1346/CCMN.2004.0520108.

Beny, J.

A. Tlili, D. Smith, J. Beny, H. Boyer. “A Raman Microprobe Study of Natural Micas”. Mineral. Mag. 1989; 53(370): 165–179. doi: 10.1180/minmag.1989.053.370.04.

Beny, J.M.

S. Lantenois, J.M. Beny, F. Muller, R. Champallier. “Integration of Fe in Natural and Synthetic Al-Pyrophyllites: An Infrared Spectroscopic Study”. Clay Miner. 2007; 42(1): 129–141. doi: 10.1180/claymin.2007.042.1.09.

Berger, B.R.

B.R. Berger, P.M. Bethke. “Geology and Geochemistry of Epithermal Systems”. Rev. Econ. Geol. 1985; 2: 298doi: 10.5382/Rev.02.

Bethke, P.M.

B.R. Berger, P.M. Bethke. “Geology and Geochemistry of Epithermal Systems”. Rev. Econ. Geol. 1985; 2: 298doi: 10.5382/Rev.02.

Bezdicka, P.

V. Košařová D. Hradil, I. Němec, P. Bezdička, V. Kanickýa. “Microanalysis of Clay-Based Pigments in Painted Artworks by the Means of Raman Spectroscopy”. J. Raman Spectrosc. 2013; 44(11): 1570–1577. doi: 10.1002/jrs.4381.

Bishop, J.L.

J. Cuadros, J.R. Michalski, V. Dekov, J.L. Bishop. “Octahedral Chemistry of 2:1 Clay Minerals and Hydroxyl Band Position in the Near-Infrared: Application to Mars”. Amer. Mineral. 2016; 101(3): 554–563. doi: 10.2138/am-2016-5366.

J.L. Bishop, E.Z.N. Dobrea, N.K. McKeown, M. Parente, et al. “Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars”. Science. 2008; 321(5890): 830–833. doi: 10.1126/science.1159699.

J.L. Bishop, E. Murad. “The Visible and Infrared Spectral Properties of Jarosite and Alunite”. Am. Mineral. 2005; 90(7): 1100–1107. doi: 10.2138/am.(2005).1700.

J.L. Bishop, E. Murad. “Characterization of minerals and biogeochemical markers on Mars: A Raman and IR spectroscopic study of montmorillonite”. J. Raman Spectrosc. 2004; 35: 480–486. doi: 10.1002/jrs.1173.

Blake, M.

W. Herrmann, M. Blake, M. Doyle, D. Huston, et al. “Short Wavelength Infrared (SWIR) Spectral Analysis of Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland”. Econ. Geol. 2001; 96(5): 939–955. doi: 10.2113/gsecongeo.96.5.939.

Bogner, A.

D.K. Breitinger, R. Kriegelstein, A. Bogner, R.G. Schwab, et al. “Vibrational Spectra of Synthetic Minerals of the Alunite and Crandallite Type”. J. Mol. Struct. 1997; 408–409: 287–290. doi: 10.1016/S0022-2860(96)09627-5.

Borah, R.R.

B.J. Saikia, G. Parthasarathy, R.R. Borah, R. Borthakur. “Raman and FTIR Spectroscopic Evaluation of Clay Minerals and Estimation of Metal Contaminations in Natural Deposition of Surface Sediments from Brahmaputra River”. Int. J. Geosci. 2016; 7: 873–883. doi: 10.4236/ijg.2016.77064.

Borthakur, R.

B.J. Saikia, G. Parthasarathy, R.R. Borah, R. Borthakur. “Raman and FTIR Spectroscopic Evaluation of Clay Minerals and Estimation of Metal Contaminations in Natural Deposition of Surface Sediments from Brahmaputra River”. Int. J. Geosci. 2016; 7: 873–883. doi: 10.4236/ijg.2016.77064.

Boyer, H.

A. Tlili, D. Smith, J. Beny, H. Boyer. “A Raman Microprobe Study of Natural Micas”. Mineral. Mag. 1989; 53(370): 165–179. doi: 10.1180/minmag.1989.053.370.04.

Breitinger, D.K.

D.K. Breitinger, R. Kriegelstein, A. Bogner, R.G. Schwab, et al. “Vibrational Spectra of Synthetic Minerals of the Alunite and Crandallite Type”. J. Mol. Struct. 1997; 408–409: 287–290. doi: 10.1016/S0022-2860(96)09627-5.

Buschette, M.J.

M.J. Buschette, S.J. Piercey. “Hydrothermal Alteration and Lithogeochemistry of the Boundary Volcanogenic Massive Sulphide Deposit, Central Newfoundland, Canada”. Can. J. Earth Sci. 2016; 53(5): 1–22. doi: 10.1139/cjes-2015-0237.

Buzatu, A.

N. Buzgar, A. Buzatu, I.V. Sanislav. “The Raman Study of Certain Sulfates”. Analele Stiintifice de Universitatii A.I. Cuza din Iasi. Sect. 2, Geologie. 2009; 55: 5–23.

Buzgar, N.

N. Buzgar, A. Buzatu, I.V. Sanislav. “The Raman Study of Certain Sulfates”. Analele Stiintifice de Universitatii A.I. Cuza din Iasi. Sect. 2, Geologie. 2009; 55: 5–23.

Carrillo-Rosúa, J.

J. Carrillo-Rosúa, S. Morales-Ruano, I. Esteban-Arispe, P. Fenoll Hach-Alí. “Significance of Phyllosilicate Mineralogy and Mineral Chemistry in an Epithermal Environment. Insights from the Palai–Islica Au–Cu Deposit (Almería, SE Spain)”. Clays Clay Miner. 2009; 57: 1–24. doi: 10.1346/CCMN.2009.0570101.

Cathelineau, M.

A.C. Prieto, J. Dubessy, M. Cathelineau. “Structure–Composition Relationships in Trioctahedral Chlorites; a Vibrational Spectroscopy Study”. Clays Clay Miner. 1991; 39: 531–539. doi: 10.1346/CCMN.1991.0390508.

Cejka, J.

R.L. Frost, S. Bahfenne, J. Čejka, J. Sejkora, et al. “Raman and Infrared Study of Phyllosilicates Containing Heavy Metals (Sb, Bi): Bismutoferrite and Chapmanite”. J. Raman Spectrosc. 2010; 41(7): 814–819. doi: 10.1002/jrs.2512.

Champallier, R.

S. Lantenois, J.M. Beny, F. Muller, R. Champallier. “Integration of Fe in Natural and Synthetic Al-Pyrophyllites: An Infrared Spectroscopic Study”. Clay Miner. 2007; 42(1): 129–141. doi: 10.1180/claymin.2007.042.1.09.

Chang, Z.

L.C. Neal, J.J. Wilkinson, P.J. Mason, Z. Chang. “Spectral Characteristics of Propylitic Alteration Minerals as a Vectoring Tool for Porphyry Copper Deposits”. J. Geochem. Explor. 2018; 184(A): 179–198. doi: 10.1016/j.gexplo.2017.10.019.

Cheng, H.

J. Huang, H. Cheng, J. Han, X. Deng, et al. “Alteration Zonation and Short Wavelength Infrared (SWIR) Characteristics of the Honghai VMS Cu–Zn Deposit, Eastern Tianshan, NW China”. Ore Geol. Rev. 2018; 100: 263–279. doi: 10.1016/j.oregeorev.2017.02.037.

Cheng, J.

S. Zhang, G. Chu, J. Cheng, Y. Zhang, et al. “Short Wavelength Infrared (SWIR) Spectroscopy of Phyllosilicate Minerals from the Tonglushan Cu–Au–Fe Deposit, Eastern China: New Exploration Indicators for Concealed Skarn Orebodies”. Ore Geol. Rev. 2020; 122: 103516doi: 10.1016/j.oregeorev.(2020).103516.

Chou, I.M.

A. Wang, J.J. Freeman, B.L. Jolliff, I.M. Chou. “Sulfates on Mars: A Systematic Raman Spectroscopic Study of Hydration States of Magnesium Sulfates”. Geochim. Cosmochim. Acta. 2006; 70(24): 6118–6135. doi: 10.1016/j.gca.2006.05.022.

Chu, G.

S. Zhang, G. Chu, J. Cheng, Y. Zhang, et al. “Short Wavelength Infrared (SWIR) Spectroscopy of Phyllosilicate Minerals from the Tonglushan Cu–Au–Fe Deposit, Eastern China: New Exploration Indicators for Concealed Skarn Orebodies”. Ore Geol. Rev. 2020; 122: 103516doi: 10.1016/j.oregeorev.(2020).103516.

Clark, J.R.

N. Gaillard, A.E. Williams-Jones, J.R. Clark, P. Lypaczewski, et al. “Mica Composition as a Vector to Gold Mineralization: Deciphering Hydrothermal and Metamorphic Effects in the Malartic District, Quebec”. Ore Geol. Rev. 2018; 95: 789–820. doi: 10.1016/j.oregeorev.2018.02.009.

Clark, R.N.

R.N. Clark, T.V. King, M. Klejwa, G.A. Swayze, N. Vergo. “High Spectral Resolution Reflectance Spectroscopy of Minerals”. J. Geophys. Res. Sol. Earth. 1990; 95(B8): 12653–12680. doi: 10.1029/JB095iB08p12653.

Cliff, G.

P.E. Rosenberg, G. Cliff. “The Formation of Pyrophyllite Solid Solutions”. Am. Mineral. 1980; 65: 1214–1219.

Cooke, D.R.

D.R. Cooke, S.F. Simmons. “Characteristics and Genesis of Epithermal Gold Deposits”. Rev. Econ. Geol. 2000; 13(2): 221–244. doi: 10.5382/Rev.13.06.

Couderc, J.J.

F. Autefage, J.J. Couderc“Étude du Mécanisme de la Migration du Sodium et du Potassium au Cours de leur Analyse a la Microsonde Électronique”. Bull. Miner. 1980; 103: 623–629.

Cuadros, J.

J. Cuadros, J.R. Michalski, V. Dekov, J.L. Bishop. “Octahedral Chemistry of 2:1 Clay Minerals and Hydroxyl Band Position in the Near-Infrared: Application to Mars”. Amer. Mineral. 2016; 101(3): 554–563. doi: 10.2138/am-2016-5366.

Cudahy, T.

R. Wang, T. Cudahy, C. Laukamp, J.L. Walshe, et al. “White Mica as a Hyperspectral Tool in Exploration for the Sunrise Dam and Kanowna Belle Gold Deposits, Western Australia”. Econ. Geol. 2017; 112(5): 1153–1176. doi: 10.5382/econgeo.2017.4505.

Dekov, V.

J. Cuadros, J.R. Michalski, V. Dekov, J.L. Bishop. “Octahedral Chemistry of 2:1 Clay Minerals and Hydroxyl Band Position in the Near-Infrared: Application to Mars”. Amer. Mineral. 2016; 101(3): 554–563. doi: 10.2138/am-2016-5366.

Deloule, E.

Ph. Gillet, J.A. Barrat, E. Deloule, M. Wadhwa, et al. “Aqueous Alteration in the Northwest Africa 817 (NWA 817) Martian Meteorite”. Earth Planet. Sci. Lett. 2002; 203(1): 431–444. doi: 10.1016/S0012-821X(02)00835-X.

Deng, X.

J. Huang, H. Cheng, J. Han, X. Deng, et al. “Alteration Zonation and Short Wavelength Infrared (SWIR) Characteristics of the Honghai VMS Cu–Zn Deposit, Eastern Tianshan, NW China”. Ore Geol. Rev. 2018; 100: 263–279. doi: 10.1016/j.oregeorev.2017.02.037.

Deyell, C.L.

C.L. Deyell, G.M. Dipple. “Equilibrium Mineral-Fluid Calculations and Their Application to the Solid Solution Between Alunite and Natroalunite in the El Indio-Pascua Belt of Chile and Argentina”. Chem. Geol. 2005; 215(1–4): 219–234. doi: 10.1016/j.chemgeo.2004.06.039.

Dipple, G.M.

C.L. Deyell, G.M. Dipple. “Equilibrium Mineral-Fluid Calculations and Their Application to the Solid Solution Between Alunite and Natroalunite in the El Indio-Pascua Belt of Chile and Argentina”. Chem. Geol. 2005; 215(1–4): 219–234. doi: 10.1016/j.chemgeo.2004.06.039.

Dobrea, E.Z.N.

J.L. Bishop, E.Z.N. Dobrea, N.K. McKeown, M. Parente, et al. “Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars”. Science. 2008; 321(5890): 830–833. doi: 10.1126/science.1159699.

Doyle, M.

W. Herrmann, M. Blake, M. Doyle, D. Huston, et al. “Short Wavelength Infrared (SWIR) Spectral Analysis of Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland”. Econ. Geol. 2001; 96(5): 939–955. doi: 10.2113/gsecongeo.96.5.939.

Dubé, G.B.

G.B. Dubé, G.R. Dunning, K. Lauziere. “Geology of the Hope Brook Mine, Newfoundland, Canada: A Preserved Late Proterozoic High-Sulfidation Epithermal Gold Deposit and its Implications for Exploration”. Econ. Geol. 1995; 93: 405–436. doi: 10.2113/gsecongeo.93.4.405.

Dubessy, J.

A.C. Prieto, J. Dubessy, M. Cathelineau. “Structure–Composition Relationships in Trioctahedral Chlorites; a Vibrational Spectroscopy Study”. Clays Clay Miner. 1991; 39: 531–539. doi: 10.1346/CCMN.1991.0390508.

Duke, E.F.

E.F. Duke. “Near Infrared Spectra of Muscovite, Tschermak Substitution, and Metamorphic Reaction Progress: Implications for Remote Sensing”. Geology. 1994; 22(7): 621–624. doi: 10.1130/0091-7613(1994)022<0621:NISOMT>2.3.CO;2.

Dunning, G.R.

S.J. O'Brien, B.H. O'Brien, G.R. Dunning, R.D. Tucker. “Late Neoproterozoic Avalonian and Related Peri-Gondwanan Rocks of the Newfoundland Appalachians”. In: R.D. Nance, M.D. Thompson, editors. Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic: Boulder, Colorado. Geol. Soc. Am. Special Paper. 1996; 304: 9–28. doi: 10.1130/0-8137-2304-3.9.

G.B. Dubé, G.R. Dunning, K. Lauziere. “Geology of the Hope Brook Mine, Newfoundland, Canada: A Preserved Late Proterozoic High-Sulfidation Epithermal Gold Deposit and its Implications for Exploration”. Econ. Geol. 1995; 93: 405–436. doi: 10.2113/gsecongeo.93.4.405.

Esteban-Arispe, I.

J. Carrillo-Rosúa, S. Morales-Ruano, I. Esteban-Arispe, P. Fenoll Hach-Alí. “Significance of Phyllosilicate Mineralogy and Mineral Chemistry in an Epithermal Environment. Insights from the Palai–Islica Au–Cu Deposit (Almería, SE Spain)”. Clays Clay Miner. 2009; 57: 1–24. doi: 10.1346/CCMN.2009.0570101.

Etoh, J.

J. Etoh, E. Izawa, K. Watanabe, S. Taguchi, R. Sekine. “Bladed Quartz and its Relationship to Gold Mineralization in the Hishikari Low-Sulfidation Epithermal Gold Deposit, Japan”. Econ. Geol. 2002; 97(8): 1841–1851. doi: 10.2113/gsecongeo.97.8.1841.

Farmer, V.C.

V.C. Farmer. “Differing Effects of Particle Size and Shape in the Infrared and Raman Spectra of Kaolinite”. Clay Miner. 1998; 33(4): 601–604. doi: 10.1180/claymin.1998.033.4.07.

Fenoll Hach-Alí, P.

J. Carrillo-Rosúa, S. Morales-Ruano, I. Esteban-Arispe, P. Fenoll Hach-Alí. “Significance of Phyllosilicate Mineralogy and Mineral Chemistry in an Epithermal Environment. Insights from the Palai–Islica Au–Cu Deposit (Almería, SE Spain)”. Clays Clay Miner. 2009; 57: 1–24. doi: 10.1346/CCMN.2009.0570101.

Ferrier, G.

G. Ferrier, A. Ganas, R. Pope, A.J. Miles. “Prospectivity Mapping for Epithermal Deposits of Western Milos Using a Fuzzy Multi Criteria Evaluation Approach Parameterized by Airborne Hyperspectral Remote Sensing Data”. Geosciences. 2019; 9: 116doi: 10.3390/geosciences9030116.

Freeman, J.J.

A. Wang, J.J. Freeman, B.L. Jolliff. “Understanding the Raman Spectral Features of Phyllosilicates”. J. Raman Spectrosc. 2015; 46: 829–845. doi: 10.1002/jrs.4680.

A. Wang, J.J. Freeman, B.L. Jolliff, I.M. Chou. “Sulfates on Mars: A Systematic Raman Spectroscopic Study of Hydration States of Magnesium Sulfates”. Geochim. Cosmochim. Acta. 2006; 70(24): 6118–6135. doi: 10.1016/j.gca.2006.05.022.

Frimmel, H.E.

H.E. Frimmel. “Earth's Continental Crustal Gold Endowment” Earth Planet. Sci. Lett. 2008; 267(1–2): 45–55. doi: 10.1016/j.epsl.2007.11.022.

Frost, R.L.

R.L. Frost, S. Bahfenne, J. Čejka, J. Sejkora, et al. “Raman and Infrared Study of Phyllosilicates Containing Heavy Metals (Sb, Bi): Bismutoferrite and Chapmanite”. J. Raman Spectrosc. 2010; 41(7): 814–819. doi: 10.1002/jrs.2512.

R.L. Frost, R.A. Wills, M.L. Weier, W. Martens, J.T. Kloprogge. “A Raman Spectroscopic Study of Alunites”. J. Mol. Struct. 2006; 785(1–3): 123–132. doi: 10.1016/j.molstruc.2005.10.003.

R.L. Frost, J.T. Kloprogge. “Raman Spectroscopy of Nontronites”. Appl. Spectrosc. 2000; 54(3): 402–405. doi: 10.1366/0003702001949483.

J.T. Kloprogge, R.L. Frost. “An Infrared Emission Spectroscopic Study of Synthetic and Natural Pyrophyllite”. Neues Jb. Miner. Abh. 1999; 2: 62–74.

R.L. Frost, S.J. Van der Gaast. “Kaolinite Hydroxyls: A Raman Microscopy Study”. Clay Miner. 1997; 32(3): 471–484. doi: 10.1180/claymin.1997.032.3.09.

R.L. Frost. “The Structure of the Kaolinite Minerals: A FT–Raman Study”. Clay Miner. 1997; 32(1): 65–77. doi: 10.1180/claymin.1997.032.1.08.

R.L. Frost, H.F. Shurvell. “Raman Microprobe Spectroscopy of Halloysite”. Clays Clay Miner. 1997; 45(1): 68–72. doi: 10.1180/claymin.1997.032.1.08.

R.L. Frost, L. Rintoul. “Lattice Vibrations of Montmorillonite: An FT Raman and X-ray Diffraction Study”. Appl. Clay Sci. 1996; 11(2–4): 171–183. doi: 10.1016/S0169-1317(96)00017-8.

R.L. Frost. “Fourier Transform Raman Spectroscopy of Kaolinite, Dickite, and Halloysite”. Clays Clay Miner. 1995; 43: 191–195. doi: 10.1346/CCMN.1995.0430206.

Gaillard, N.

N. Gaillard, A.E. Williams-Jones, J.R. Clark, P. Lypaczewski, et al. “Mica Composition as a Vector to Gold Mineralization: Deciphering Hydrothermal and Metamorphic Effects in the Malartic District, Quebec”. Ore Geol. Rev. 2018; 95: 789–820. doi: 10.1016/j.oregeorev.2018.02.009.

Ganas, A.

G. Ferrier, A. Ganas, R. Pope, A.J. Miles. “Prospectivity Mapping for Epithermal Deposits of Western Milos Using a Fuzzy Multi Criteria Evaluation Approach Parameterized by Airborne Hyperspectral Remote Sensing Data”. Geosciences. 2019; 9: 116doi: 10.3390/geosciences9030116.

Gemmell, J.B.

S. Jones, W. Herrmann, J.B. Gemmell. “Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada”. Econ. Geol. 2005; 100(2): 273–294. doi: 10.2113/gsecongeo.100.2.273.

Giles, D.

M.C. Tappert, B. Rivard, D. Giles, R. Tappert, A. Mauger. “The Mineral Chemistry, Near-Infrared, and Mid-Infrared Reflectance Spectroscopy of Phengite from the Olympic Dam IOCG Deposit, South Australia”. Ore Geol. Rev. 2013; 53: 26–38. doi: 10.1016/j.oregeorev.2012.12.006.

Gillet, Ph.

Ph. Gillet, J.A. Barrat, E. Deloule, M. Wadhwa, et al. “Aqueous Alteration in the Northwest Africa 817 (NWA 817) Martian Meteorite”. Earth Planet. Sci. Lett. 2002; 203(1): 431–444. doi: 10.1016/S0012-821X(02)00835-X.

González-Urien, E.

J.W. Hedenquist, A. Arribas, E. González-Urien. “Exploration for Epithermal Gold Deposits”. Rev. Econ. Geol. 2000; 13: 245–277. doi: 10.5382/Rev.13.07.

Graham, G.E.

G.E. Graham, R.F. Kokaly, K.D. Kelley, T.M. Hoefen, et al. “Application of Imaging Spectroscopy for Mineral Exploration in Alaska: A Study over Porphyry Cu Deposits in the Eastern Alaska Range”. Econ. Geol. 2018; 113(2): 489–510. doi: 10.5382/econgeo.2018.4559.

Han, J.

J. Huang, H. Cheng, J. Han, X. Deng, et al. “Alteration Zonation and Short Wavelength Infrared (SWIR) Characteristics of the Honghai VMS Cu–Zn Deposit, Eastern Tianshan, NW China”. Ore Geol. Rev. 2018; 100: 263–279. doi: 10.1016/j.oregeorev.2017.02.037.

Haskin, L.A.

A. Wang, K. Kuebler, B. Jolliff, L.A. Haskin. “Mineralogy of a Martial Meteorite as Determined by Raman Spectroscopy”. J. Raman Spectrosc. 2004; 35(6): 504–514. doi: 10.1002/jrs.1175.

Hauff, P.L.

A.J.B. Thompson, P.L. Hauff, A.J. Robitaille. “Alteration Mapping in Exploration: Application of Short-Wave Infrared (SWIR) Spectroscopy”. Soc. Econ. Geol. News. 1999; 39: 15–27.

Hedenquist, J.W.

J.W. Hedenquist, A. Arribas, E. González-Urien. “Exploration for Epithermal Gold Deposits”. Rev. Econ. Geol. 2000; 13: 245–277. doi: 10.5382/Rev.13.07.

N.C. White, J.W. Hedenquist. “Epithermal Gold Deposits: Styles, Characteristics, and Exploration”. SEG Newsletter. 1995; 23(1): 9–13.

Herrmann, W.

S. Jones, W. Herrmann, J.B. Gemmell. “Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada”. Econ. Geol. 2005; 100(2): 273–294. doi: 10.2113/gsecongeo.100.2.273.

W. Herrmann, M. Blake, M. Doyle, D. Huston, et al. “Short Wavelength Infrared (SWIR) Spectral Analysis of Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland”. Econ. Geol. 2001; 96(5): 939–955. doi: 10.2113/gsecongeo.96.5.939.

Hoefen, T.M.

G.E. Graham, R.F. Kokaly, K.D. Kelley, T.M. Hoefen, et al. “Application of Imaging Spectroscopy for Mineral Exploration in Alaska: A Study over Porphyry Cu Deposits in the Eastern Alaska Range”. Econ. Geol. 2018; 113(2): 489–510. doi: 10.5382/econgeo.2018.4559.

Hradil, D.

V. Košařová D. Hradil, I. Němec, P. Bezdička, V. Kanickýa. “Microanalysis of Clay-Based Pigments in Painted Artworks by the Means of Raman Spectroscopy”. J. Raman Spectrosc. 2013; 44(11): 1570–1577. doi: 10.1002/jrs.4381.

Huang, J.

J. Huang, H. Cheng, J. Han, X. Deng, et al. “Alteration Zonation and Short Wavelength Infrared (SWIR) Characteristics of the Honghai VMS Cu–Zn Deposit, Eastern Tianshan, NW China”. Ore Geol. Rev. 2018; 100: 263–279. doi: 10.1016/j.oregeorev.2017.02.037.

Huntington, J.

A. Thompson, K. Scott, J. Huntington, K. Yang. “Mapping Mineralogy with Reflectance Spectroscopy: Examples from Volcanogenic Massive Sulfide Deposits”. In: R. Bedell, A.P. Crósta, E. Grunsky, editors. Remote Sensing and Spectral Geology. Rev. Econ. Geol. 2009; 16: 1–16. doi: 10.5382/Rev.16.04.

Huston, D.

W. Herrmann, M. Blake, M. Doyle, D. Huston, et al. “Short Wavelength Infrared (SWIR) Spectral Analysis of Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland”. Econ. Geol. 2001; 96(5): 939–955. doi: 10.2113/gsecongeo.96.5.939.

Inoue, A.

A. Inoue, S. Inoué, M. Utada. “Application of Chlorite Thermometry to Estimation of Formation Temperature and Redox Conditions”. Clay Miner. 2018; 53(2): 143–158. doi: 10.1180/clm.2018.10.

A. Inoue, A. Meunier, D. Beaufort. “Illite–Smectite Mixed-Layer Minerals in Felsic Volcaniclastic Rocks from Drill Cores, Kakkonda, Japan”. Clays Clay Miner. 2004; 52(1): 66–84. doi: 10.1346/CCMN.2004.0520108.

Inoué, S.

A. Inoue, S. Inoué, M. Utada. “Application of Chlorite Thermometry to Estimation of Formation Temperature and Redox Conditions”. Clay Miner. 2018; 53(2): 143–158. doi: 10.1180/clm.2018.10.

Ito, E.

S. Zhai, E. Ito, A. Yoneda. “Effects of Pre-Heated Pyrophyllite Gaskets on High-Pressure Generation in the Kawai-Type Multi-Anvil Experiments”. High Press. Res. 2008; 28(3): 265–271. doi: 10.1080/08957950802454050.

Izawa, E.

J. Etoh, E. Izawa, K. Watanabe, S. Taguchi, R. Sekine. “Bladed Quartz and its Relationship to Gold Mineralization in the Hishikari Low-Sulfidation Epithermal Gold Deposit, Japan”. Econ. Geol. 2002; 97(8): 1841–1851. doi: 10.2113/gsecongeo.97.8.1841.

Jambor, J.L.

R.E. Stoffregen, C.N. Alpers, J.L. Jambor. “Alunite–Jarosite Crystallography, Thermodynamics, and Geochronology”. Rev. Mineral. Geochem. 2000; 40(1): 453–479. doi: 10.2138/rmg.2000.40.9.

John, D.A.

S.F. Simmons, N.C. White, D.A. John. “Geological Characteristics of Epithermal Precious and Base Metal Deposits”. Econ. Geol. 2005; 100: 485–522. doi: 10.5382/AV100.16.

Jolliff, B.

A. Wang, K. Kuebler, B. Jolliff, L.A. Haskin. “Mineralogy of a Martial Meteorite as Determined by Raman Spectroscopy”. J. Raman Spectrosc. 2004; 35(6): 504–514. doi: 10.1002/jrs.1175.

Jolliff, B.L.

A. Wang, J.J. Freeman, B.L. Jolliff. “Understanding the Raman Spectral Features of Phyllosilicates”. J. Raman Spectrosc. 2015; 46: 829–845. doi: 10.1002/jrs.4680.

A. Wang, J.J. Freeman, B.L. Jolliff, I.M. Chou. “Sulfates on Mars: A Systematic Raman Spectroscopic Study of Hydration States of Magnesium Sulfates”. Geochim. Cosmochim. Acta. 2006; 70(24): 6118–6135. doi: 10.1016/j.gca.2006.05.022.

Jones, S.

S. Jones, W. Herrmann, J.B. Gemmell. “Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada”. Econ. Geol. 2005; 100(2): 273–294. doi: 10.2113/gsecongeo.100.2.273.

Kanickýa, V.

V. Košařová D. Hradil, I. Němec, P. Bezdička, V. Kanickýa. “Microanalysis of Clay-Based Pigments in Painted Artworks by the Means of Raman Spectroscopy”. J. Raman Spectrosc. 2013; 44(11): 1570–1577. doi: 10.1002/jrs.4381.

Kelley, K.D.

G.E. Graham, R.F. Kokaly, K.D. Kelley, T.M. Hoefen, et al. “Application of Imaging Spectroscopy for Mineral Exploration in Alaska: A Study over Porphyry Cu Deposits in the Eastern Alaska Range”. Econ. Geol. 2018; 113(2): 489–510. doi: 10.5382/econgeo.2018.4559.

King, T.V.

R.N. Clark, T.V. King, M. Klejwa, G.A. Swayze, N. Vergo. “High Spectral Resolution Reflectance Spectroscopy of Minerals”. J. Geophys. Res. Sol. Earth. 1990; 95(B8): 12653–12680. doi: 10.1029/JB095iB08p12653.

Klejwa, M.

R.N. Clark, T.V. King, M. Klejwa, G.A. Swayze, N. Vergo. “High Spectral Resolution Reflectance Spectroscopy of Minerals”. J. Geophys. Res. Sol. Earth. 1990; 95(B8): 12653–12680. doi: 10.1029/JB095iB08p12653.

Kloprogge, J.T.

R.L. Frost, R.A. Wills, M.L. Weier, W. Martens, J.T. Kloprogge. “A Raman Spectroscopic Study of Alunites”. J. Mol. Struct. 2006; 785(1–3): 123–132. doi: 10.1016/j.molstruc.2005.10.003.

R.L. Frost, J.T. Kloprogge. “Raman Spectroscopy of Nontronites”. Appl. Spectrosc. 2000; 54(3): 402–405. doi: 10.1366/0003702001949483.

J.T. Kloprogge, R.L. Frost. “An Infrared Emission Spectroscopic Study of Synthetic and Natural Pyrophyllite”. Neues Jb. Miner. Abh. 1999; 2: 62–74.

Kokaly, R.F.

G.E. Graham, R.F. Kokaly, K.D. Kelley, T.M. Hoefen, et al. “Application of Imaging Spectroscopy for Mineral Exploration in Alaska: A Study over Porphyry Cu Deposits in the Eastern Alaska Range”. Econ. Geol. 2018; 113(2): 489–510. doi: 10.5382/econgeo.2018.4559.

Košarová, V.

V. Košařová D. Hradil, I. Němec, P. Bezdička, V. Kanickýa. “Microanalysis of Clay-Based Pigments in Painted Artworks by the Means of Raman Spectroscopy”. J. Raman Spectrosc. 2013; 44(11): 1570–1577. doi: 10.1002/jrs.4381.

Kriegelstein, R.

D.K. Breitinger, R. Kriegelstein, A. Bogner, R.G. Schwab, et al. “Vibrational Spectra of Synthetic Minerals of the Alunite and Crandallite Type”. J. Mol. Struct. 1997; 408–409: 287–290. doi: 10.1016/S0022-2860(96)09627-5.

Kuebler, K.

A. Wang, K. Kuebler, B. Jolliff, L.A. Haskin. “Mineralogy of a Martial Meteorite as Determined by Raman Spectroscopy”. J. Raman Spectrosc. 2004; 35(6): 504–514. doi: 10.1002/jrs.1175.

Lahfid, A.

N. Maubec, A. Lahfid, C. Lerouge, W.K. Michel. “Characterization of Alunite Supergroup Minerals by Raman Spectroscopy”. Spectrochim. Acta, Part A. 2012; 96: 925–939. doi: 10.1016/j.saa.2012.07.094.

Lantenois, S.

S. Lantenois, J.M. Beny, F. Muller, R. Champallier. “Integration of Fe in Natural and Synthetic Al-Pyrophyllites: An Infrared Spectroscopic Study”. Clay Miner. 2007; 42(1): 129–141. doi: 10.1180/claymin.2007.042.1.09.

Laukamp, C.

R. Wang, T. Cudahy, C. Laukamp, J.L. Walshe, et al. “White Mica as a Hyperspectral Tool in Exploration for the Sunrise Dam and Kanowna Belle Gold Deposits, Western Australia”. Econ. Geol. 2017; 112(5): 1153–1176. doi: 10.5382/econgeo.2017.4505.

Lauziere, K.

G.B. Dubé, G.R. Dunning, K. Lauziere. “Geology of the Hope Brook Mine, Newfoundland, Canada: A Preserved Late Proterozoic High-Sulfidation Epithermal Gold Deposit and its Implications for Exploration”. Econ. Geol. 1995; 93: 405–436. doi: 10.2113/gsecongeo.93.4.405.

Layne, G.D.

C. Arbiol, G.D. Layne, G. Zanoni, B. Segvic. “Characteristics and Genesis of Phyllosilicate Hydrothermal Assemblages from Neoproterozoic Epithermal Au–Ag Mineralization of the Avalon Zone of Newfoundland, Canada”. Appl. Clay Sci. 2021; 202: 105960doi: 10.1016/j.clay.2020.105960.

Lerouge, C.

N. Maubec, A. Lahfid, C. Lerouge, W.K. Michel. “Characterization of Alunite Supergroup Minerals by Raman Spectroscopy”. Spectrochim. Acta, Part A. 2012; 96: 925–939. doi: 10.1016/j.saa.2012.07.094.

Loh, E.

E. Loh. “Optical Vibrations in Sheet Silicates”. J. Phys. C: Solid State Phys. 1973; 6(6): 1091–1104. doi: 10.1088/0022-3719/6/6/022.

Lypaczewski, P.

N. Gaillard, A.E. Williams-Jones, J.R. Clark, P. Lypaczewski, et al. “Mica Composition as a Vector to Gold Mineralization: Deciphering Hydrothermal and Metamorphic Effects in the Malartic District, Quebec”. Ore Geol. Rev. 2018; 95: 789–820. doi: 10.1016/j.oregeorev.2018.02.009.

Martens, W.

R.L. Frost, R.A. Wills, M.L. Weier, W. Martens, J.T. Kloprogge. “A Raman Spectroscopic Study of Alunites”. J. Mol. Struct. 2006; 785(1–3): 123–132. doi: 10.1016/j.molstruc.2005.10.003.

Mason, P.J.

L.C. Neal, J.J. Wilkinson, P.J. Mason, Z. Chang. “Spectral Characteristics of Propylitic Alteration Minerals as a Vectoring Tool for Porphyry Copper Deposits”. J. Geochem. Explor. 2018; 184(A): 179–198. doi: 10.1016/j.gexplo.2017.10.019.

Mason, R.

W.W. Rudolph, R. Mason. “Study of Aqueous Al2(SO4)3 Solution Under Hydrothermal Conditions: Sulfate Ion Pairing, Hydrolysis, and Formation of Hydronium Alunite”. J. Solution Chem. 2001; 30: 527–548. doi: 10.1023/A:1010334818580.

Maubec, N.

N. Maubec, A. Lahfid, C. Lerouge, W.K. Michel. “Characterization of Alunite Supergroup Minerals by Raman Spectroscopy”. Spectrochim. Acta, Part A. 2012; 96: 925–939. doi: 10.1016/j.saa.2012.07.094.

Mauger, A.

M.C. Tappert, B. Rivard, D. Giles, R. Tappert, A. Mauger. “The Mineral Chemistry, Near-Infrared, and Mid-Infrared Reflectance Spectroscopy of Phengite from the Olympic Dam IOCG Deposit, South Australia”. Ore Geol. Rev. 2013; 53: 26–38. doi: 10.1016/j.oregeorev.2012.12.006.

Mauk, J.L.

M.P. Simpson, J.L. Mauk. “Hydrothermal Alteration and Veins at the Epithermal Au–Ag Deposits and Prospects of the Waitekauri Area, Hauraki Goldfield, New Zealand”. Econ. Geol. 2011; 106(6): 945–973. doi: 10.2113/econgeo.106.6.945.

D.A. Tillick, D.R. Peacor, J.L. Mauk. “Genesis of Dioctahedral Phyllosilicates during Hydrothermal Alteration of Volcanic Rocks: I. The Golden Cross Epithermal Ore Deposit, New Zealand”. Clays Clay Miner. 2001; 49: 126–140. doi: 10.1346/CCMN.2001.0490203.

McKeown, N.K.

J.L. Bishop, E.Z.N. Dobrea, N.K. McKeown, M. Parente, et al. “Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars”. Science. 2008; 321(5890): 830–833. doi: 10.1126/science.1159699.

Meunier, A.

A. Inoue, A. Meunier, D. Beaufort. “Illite–Smectite Mixed-Layer Minerals in Felsic Volcaniclastic Rocks from Drill Cores, Kakkonda, Japan”. Clays Clay Miner. 2004; 52(1): 66–84. doi: 10.1346/CCMN.2004.0520108.

Michalski, J.R.

J. Cuadros, J.R. Michalski, V. Dekov, J.L. Bishop. “Octahedral Chemistry of 2:1 Clay Minerals and Hydroxyl Band Position in the Near-Infrared: Application to Mars”. Amer. Mineral. 2016; 101(3): 554–563. doi: 10.2138/am-2016-5366.

Michel, W.K.

N. Maubec, A. Lahfid, C. Lerouge, W.K. Michel. “Characterization of Alunite Supergroup Minerals by Raman Spectroscopy”. Spectrochim. Acta, Part A. 2012; 96: 925–939. doi: 10.1016/j.saa.2012.07.094.

Miles, A.J.

G. Ferrier, A. Ganas, R. Pope, A.J. Miles. “Prospectivity Mapping for Epithermal Deposits of Western Milos Using a Fuzzy Multi Criteria Evaluation Approach Parameterized by Airborne Hyperspectral Remote Sensing Data”. Geosciences. 2019; 9: 116doi: 10.3390/geosciences9030116.

Morales-Ruano, S.

J. Carrillo-Rosúa, S. Morales-Ruano, I. Esteban-Arispe, P. Fenoll Hach-Alí. “Significance of Phyllosilicate Mineralogy and Mineral Chemistry in an Epithermal Environment. Insights from the Palai–Islica Au–Cu Deposit (Almería, SE Spain)”. Clays Clay Miner. 2009; 57: 1–24. doi: 10.1346/CCMN.2009.0570101.

Muller, F.

S. Lantenois, J.M. Beny, F. Muller, R. Champallier. “Integration of Fe in Natural and Synthetic Al-Pyrophyllites: An Infrared Spectroscopic Study”. Clay Miner. 2007; 42(1): 129–141. doi: 10.1180/claymin.2007.042.1.09.

Murad, E.

J.L. Bishop, E. Murad. “The Visible and Infrared Spectral Properties of Jarosite and Alunite”. Am. Mineral. 2005; 90(7): 1100–1107. doi: 10.2138/am.(2005).1700.

J.L. Bishop, E. Murad. “Characterization of minerals and biogeochemical markers on Mars: A Raman and IR spectroscopic study of montmorillonite”. J. Raman Spectrosc. 2004; 35: 480–486. doi: 10.1002/jrs.1173.

Neal, L.C.

L.C. Neal, J.J. Wilkinson, P.J. Mason, Z. Chang. “Spectral Characteristics of Propylitic Alteration Minerals as a Vectoring Tool for Porphyry Copper Deposits”. J. Geochem. Explor. 2018; 184(A): 179–198. doi: 10.1016/j.gexplo.2017.10.019.

Nemec, I.

V. Košařová D. Hradil, I. Němec, P. Bezdička, V. Kanickýa. “Microanalysis of Clay-Based Pigments in Painted Artworks by the Means of Raman Spectroscopy”. J. Raman Spectrosc. 2013; 44(11): 1570–1577. doi: 10.1002/jrs.4381.

O'Brien, B.H.

S.J. O'Brien, B.H. O'Brien, G.R. Dunning, R.D. Tucker. “Late Neoproterozoic Avalonian and Related Peri-Gondwanan Rocks of the Newfoundland Appalachians”. In: R.D. Nance, M.D. Thompson, editors. Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic: Boulder, Colorado. Geol. Soc. Am. Special Paper. 1996; 304: 9–28. doi: 10.1130/0-8137-2304-3.9.

O'Brien, S.J.

S.J. O'Brien, B.H. O'Brien, G.R. Dunning, R.D. Tucker. “Late Neoproterozoic Avalonian and Related Peri-Gondwanan Rocks of the Newfoundland Appalachians”. In: R.D. Nance, M.D. Thompson, editors. Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic: Boulder, Colorado. Geol. Soc. Am. Special Paper. 1996; 304: 9–28. doi: 10.1130/0-8137-2304-3.9.

Omori, K.

K. Omori. “Infrared Diffraction and the Far Infrared Spectra of Anhydrous Sulfates”. Mineral. J. 1968; 5(5): 334–354. doi: 10.2465/minerj(1953).5.334.

Parente, M.

J.L. Bishop, E.Z.N. Dobrea, N.K. McKeown, M. Parente, et al. “Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars”. Science. 2008; 321(5890): 830–833. doi: 10.1126/science.1159699.

Parra, T.

O. Vidal, T. Parra, F. Trotet. “A Thermodynamic Model for Fe–Mg Aluminous Chlorite Using Data from Phase Equilibrium Experiments and Natural Pelitic Assemblages in the 100° to 600°, 1 to 25 kb range”. Am. J. Sci. 2001; 301(6): 557–592. doi: 10.2475/ajs.301.6.557.

Parthasarathy, G.

B.J. Saikia, G. Parthasarathy, R.R. Borah, R. Borthakur. “Raman and FTIR Spectroscopic Evaluation of Clay Minerals and Estimation of Metal Contaminations in Natural Deposition of Surface Sediments from Brahmaputra River”. Int. J. Geosci. 2016; 7: 873–883. doi: 10.4236/ijg.2016.77064.

Peacor, D.R.

Y. Yan, D.A. Tillick, D.R. Peacor, S.F. Simmons. “Genesis of Dioctahedral Phyllosilicates during Hydrothermal Alteration of Volcanic Rocks: II. The Broadlands–Ohaaki Hydrothermal System, New Zealand”. Clays Clay Miner. 2001; 49: 141–155. doi: 10.1346/CCMN.2001.0490204.

D.A. Tillick, D.R. Peacor, J.L. Mauk. “Genesis of Dioctahedral Phyllosilicates during Hydrothermal Alteration of Volcanic Rocks: I. The Golden Cross Epithermal Ore Deposit, New Zealand”. Clays Clay Miner. 2001; 49: 126–140. doi: 10.1346/CCMN.2001.0490203.

Pichoir, F.

J.L. Pouchou, F. Pichoir. “A New Model for Quantitative Analyses. I. Application to the Analysis of Homogeneous Samples”. La Recherche Aérospatiale. 1984; 3: 13–38.

Piercey, S.J.

M.J. Buschette, S.J. Piercey. “Hydrothermal Alteration and Lithogeochemistry of the Boundary Volcanogenic Massive Sulphide Deposit, Central Newfoundland, Canada”. Can. J. Earth Sci. 2016; 53(5): 1–22. doi: 10.1139/cjes-2015-0237.

Pope, R.

G. Ferrier, A. Ganas, R. Pope, A.J. Miles. “Prospectivity Mapping for Epithermal Deposits of Western Milos Using a Fuzzy Multi Criteria Evaluation Approach Parameterized by Airborne Hyperspectral Remote Sensing Data”. Geosciences. 2019; 9: 116doi: 10.3390/geosciences9030116.

Pouchou, J.L.

J.L. Pouchou, F. Pichoir. “A New Model for Quantitative Analyses. I. Application to the Analysis of Homogeneous Samples”. La Recherche Aérospatiale. 1984; 3: 13–38.

Prieto, A.C.

A.C. Prieto, J. Dubessy, M. Cathelineau. “Structure–Composition Relationships in Trioctahedral Chlorites; a Vibrational Spectroscopy Study”. Clays Clay Miner. 1991; 39: 531–539. doi: 10.1346/CCMN.1991.0390508.

Redfern, S.A.T.

L. Wang, M. Zhang, S.A.T. Redfern, Z. Zhang. “Dehydroxylation and Transformations of the 2:1 Phyllosilicate Pyrophyllite at Elevated Temperatures: An Infrared Spectroscopic Study”. Clays Clay Miner. 2002; 50(2): 272–283. doi: 10.1346/000986002760832874.

Rintoul, L.

R.L. Frost, L. Rintoul. “Lattice Vibrations of Montmorillonite: An FT Raman and X-ray Diffraction Study”. Appl. Clay Sci. 1996; 11(2–4): 171–183. doi: 10.1016/S0169-1317(96)00017-8.

Rivard, B.

M.C. Tappert, B. Rivard, D. Giles, R. Tappert, A. Mauger. “The Mineral Chemistry, Near-Infrared, and Mid-Infrared Reflectance Spectroscopy of Phengite from the Olympic Dam IOCG Deposit, South Australia”. Ore Geol. Rev. 2013; 53: 26–38. doi: 10.1016/j.oregeorev.2012.12.006.

Robitaille, A.J.

A.J.B. Thompson, P.L. Hauff, A.J. Robitaille. “Alteration Mapping in Exploration: Application of Short-Wave Infrared (SWIR) Spectroscopy”. Soc. Econ. Geol. News. 1999; 39: 15–27.

Rosenberg, P.E.

P.E. Rosenberg, G. Cliff. “The Formation of Pyrophyllite Solid Solutions”. Am. Mineral. 1980; 65: 1214–1219.

Rudolph, W.W.

W.W. Rudolph, R. Mason. “Study of Aqueous Al2(SO4)3 Solution Under Hydrothermal Conditions: Sulfate Ion Pairing, Hydrolysis, and Formation of Hydronium Alunite”. J. Solution Chem. 2001; 30: 527–548. doi: 10.1023/A:1010334818580.

Saikia, B.J.

B.J. Saikia, G. Parthasarathy, R.R. Borah, R. Borthakur. “Raman and FTIR Spectroscopic Evaluation of Clay Minerals and Estimation of Metal Contaminations in Natural Deposition of Surface Sediments from Brahmaputra River”. Int. J. Geosci. 2016; 7: 873–883. doi: 10.4236/ijg.2016.77064.

Sanislav, I.V.

N. Buzgar, A. Buzatu, I.V. Sanislav. “The Raman Study of Certain Sulfates”. Analele Stiintifice de Universitatii A.I. Cuza din Iasi. Sect. 2, Geologie. 2009; 55: 5–23.

Schwab, R.G.

D.K. Breitinger, R. Kriegelstein, A. Bogner, R.G. Schwab, et al. “Vibrational Spectra of Synthetic Minerals of the Alunite and Crandallite Type”. J. Mol. Struct. 1997; 408–409: 287–290. doi: 10.1016/S0022-2860(96)09627-5.

Scott, K.

A. Thompson, K. Scott, J. Huntington, K. Yang. “Mapping Mineralogy with Reflectance Spectroscopy: Examples from Volcanogenic Massive Sulfide Deposits”. In: R. Bedell, A.P. Crósta, E. Grunsky, editors. Remote Sensing and Spectral Geology. Rev. Econ. Geol. 2009; 16: 1–16. doi: 10.5382/Rev.16.04.

Segvic, B.

C. Arbiol, G.D. Layne, G. Zanoni, B. Segvic. “Characteristics and Genesis of Phyllosilicate Hydrothermal Assemblages from Neoproterozoic Epithermal Au–Ag Mineralization of the Avalon Zone of Newfoundland, Canada”. Appl. Clay Sci. 2021; 202: 105960doi: 10.1016/j.clay.2020.105960.

Sejkora, J.

R.L. Frost, S. Bahfenne, J. Čejka, J. Sejkora, et al. “Raman and Infrared Study of Phyllosilicates Containing Heavy Metals (Sb, Bi): Bismutoferrite and Chapmanite”. J. Raman Spectrosc. 2010; 41(7): 814–819. doi: 10.1002/jrs.2512.

Sekine, R.

J. Etoh, E. Izawa, K. Watanabe, S. Taguchi, R. Sekine. “Bladed Quartz and its Relationship to Gold Mineralization in the Hishikari Low-Sulfidation Epithermal Gold Deposit, Japan”. Econ. Geol. 2002; 97(8): 1841–1851. doi: 10.2113/gsecongeo.97.8.1841.

Shurvell, H.F.

R.L. Frost, H.F. Shurvell. “Raman Microprobe Spectroscopy of Halloysite”. Clays Clay Miner. 1997; 45(1): 68–72. doi: 10.1180/claymin.1997.032.1.08.

Sillitoe, R.H.

R.H. Sillitoe. “Porphyry Copper Systems”. Econ. Geol. 2010; 105(1): 3–41. doi: 10.2113/gsecongeo.105.1.3.

Simmons, S.F.

S.F. Simmons, N.C. White, D.A. John. “Geological Characteristics of Epithermal Precious and Base Metal Deposits”. Econ. Geol. 2005; 100: 485–522. doi: 10.5382/AV100.16.

Y. Yan, D.A. Tillick, D.R. Peacor, S.F. Simmons. “Genesis of Dioctahedral Phyllosilicates during Hydrothermal Alteration of Volcanic Rocks: II. The Broadlands–Ohaaki Hydrothermal System, New Zealand”. Clays Clay Miner. 2001; 49: 141–155. doi: 10.1346/CCMN.2001.0490204.

D.R. Cooke, S.F. Simmons. “Characteristics and Genesis of Epithermal Gold Deposits”. Rev. Econ. Geol. 2000; 13(2): 221–244. doi: 10.5382/Rev.13.06.

Simpson, M.P.

M.P. Simpson, J.L. Mauk. “Hydrothermal Alteration and Veins at the Epithermal Au–Ag Deposits and Prospects of the Waitekauri Area, Hauraki Goldfield, New Zealand”. Econ. Geol. 2011; 106(6): 945–973. doi: 10.2113/econgeo.106.6.945.

Smith, D.

A. Tlili, D. Smith, J. Beny, H. Boyer. “A Raman Microprobe Study of Natural Micas”. Mineral. Mag. 1989; 53(370): 165–179. doi: 10.1180/minmag.1989.053.370.04.

Stoffregen, R.E.

R.E. Stoffregen, C.N. Alpers, J.L. Jambor. “Alunite–Jarosite Crystallography, Thermodynamics, and Geochronology”. Rev. Mineral. Geochem. 2000; 40(1): 453–479. doi: 10.2138/rmg.2000.40.9.

Swayze, G.A.

R.N. Clark, T.V. King, M. Klejwa, G.A. Swayze, N. Vergo. “High Spectral Resolution Reflectance Spectroscopy of Minerals”. J. Geophys. Res. Sol. Earth. 1990; 95(B8): 12653–12680. doi: 10.1029/JB095iB08p12653.

Taguchi, S.

J. Etoh, E. Izawa, K. Watanabe, S. Taguchi, R. Sekine. “Bladed Quartz and its Relationship to Gold Mineralization in the Hishikari Low-Sulfidation Epithermal Gold Deposit, Japan”. Econ. Geol. 2002; 97(8): 1841–1851. doi: 10.2113/gsecongeo.97.8.1841.

Tappert, M.C.

M.C. Tappert, B. Rivard, D. Giles, R. Tappert, A. Mauger. “The Mineral Chemistry, Near-Infrared, and Mid-Infrared Reflectance Spectroscopy of Phengite from the Olympic Dam IOCG Deposit, South Australia”. Ore Geol. Rev. 2013; 53: 26–38. doi: 10.1016/j.oregeorev.2012.12.006.

Tappert, R.

M.C. Tappert, B. Rivard, D. Giles, R. Tappert, A. Mauger. “The Mineral Chemistry, Near-Infrared, and Mid-Infrared Reflectance Spectroscopy of Phengite from the Olympic Dam IOCG Deposit, South Australia”. Ore Geol. Rev. 2013; 53: 26–38. doi: 10.1016/j.oregeorev.2012.12.006.

Thompson, A.

A. Thompson, K. Scott, J. Huntington, K. Yang. “Mapping Mineralogy with Reflectance Spectroscopy: Examples from Volcanogenic Massive Sulfide Deposits”. In: R. Bedell, A.P. Crósta, E. Grunsky, editors. Remote Sensing and Spectral Geology. Rev. Econ. Geol. 2009; 16: 1–16. doi: 10.5382/Rev.16.04.

Thompson, A.J.B.

A.J.B. Thompson, P.L. Hauff, A.J. Robitaille. “Alteration Mapping in Exploration: Application of Short-Wave Infrared (SWIR) Spectroscopy”. Soc. Econ. Geol. News. 1999; 39: 15–27.

Tillick, D.A.

D.A. Tillick, D.R. Peacor, J.L. Mauk. “Genesis of Dioctahedral Phyllosilicates during Hydrothermal Alteration of Volcanic Rocks: I. The Golden Cross Epithermal Ore Deposit, New Zealand”. Clays Clay Miner. 2001; 49: 126–140. doi: 10.1346/CCMN.2001.0490203.

Y. Yan, D.A. Tillick, D.R. Peacor, S.F. Simmons. “Genesis of Dioctahedral Phyllosilicates during Hydrothermal Alteration of Volcanic Rocks: II. The Broadlands–Ohaaki Hydrothermal System, New Zealand”. Clays Clay Miner. 2001; 49: 141–155. doi: 10.1346/CCMN.2001.0490204.

Tlili, A.

M. Toumi, A. Tlili. “Rietveld Refinement and Vibrational Spectroscopic Study of Alunite from El Gnater, Central Tunisia”. J. Russ, J. Inorg. Chem. 2008; 53: 1845–1853. doi: 10.1134/S0036023608120048.

A. Tlili, D. Smith, J. Beny, H. Boyer. “A Raman Microprobe Study of Natural Micas”. Mineral. Mag. 1989; 53(370): 165–179. doi: 10.1180/minmag.1989.053.370.04.

Toumi, M.

M. Toumi, A. Tlili. “Rietveld Refinement and Vibrational Spectroscopic Study of Alunite from El Gnater, Central Tunisia”. J. Russ, J. Inorg. Chem. 2008; 53: 1845–1853. doi: 10.1134/S0036023608120048.

Trotet, F.

O. Vidal, T. Parra, F. Trotet. “A Thermodynamic Model for Fe–Mg Aluminous Chlorite Using Data from Phase Equilibrium Experiments and Natural Pelitic Assemblages in the 100° to 600°, 1 to 25 kb range”. Am. J. Sci. 2001; 301(6): 557–592. doi: 10.2475/ajs.301.6.557.

Tucker, R.D.

S.J. O'Brien, B.H. O'Brien, G.R. Dunning, R.D. Tucker. “Late Neoproterozoic Avalonian and Related Peri-Gondwanan Rocks of the Newfoundland Appalachians”. In: R.D. Nance, M.D. Thompson, editors. Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic: Boulder, Colorado. Geol. Soc. Am. Special Paper. 1996; 304: 9–28. doi: 10.1130/0-8137-2304-3.9.

Utada, M.

A. Inoue, S. Inoué, M. Utada. “Application of Chlorite Thermometry to Estimation of Formation Temperature and Redox Conditions”. Clay Miner. 2018; 53(2): 143–158. doi: 10.1180/clm.2018.10.

Van der Gaast, S.J.

R.L. Frost, S.J. Van der Gaast. “Kaolinite Hydroxyls: A Raman Microscopy Study”. Clay Miner. 1997; 32(3): 471–484. doi: 10.1180/claymin.1997.032.3.09.

Vergo, N.

R.N. Clark, T.V. King, M. Klejwa, G.A. Swayze, N. Vergo. “High Spectral Resolution Reflectance Spectroscopy of Minerals”. J. Geophys. Res. Sol. Earth. 1990; 95(B8): 12653–12680. doi: 10.1029/JB095iB08p12653.

Vidal, O.

O. Vidal, T. Parra, F. Trotet. “A Thermodynamic Model for Fe–Mg Aluminous Chlorite Using Data from Phase Equilibrium Experiments and Natural Pelitic Assemblages in the 100° to 600°, 1 to 25 kb range”. Am. J. Sci. 2001; 301(6): 557–592. doi: 10.2475/ajs.301.6.557.

Wadhwa, M.

Ph. Gillet, J.A. Barrat, E. Deloule, M. Wadhwa, et al. “Aqueous Alteration in the Northwest Africa 817 (NWA 817) Martian Meteorite”. Earth Planet. Sci. Lett. 2002; 203(1): 431–444. doi: 10.1016/S0012-821X(02)00835-X.

Walshe, J.L.

R. Wang, T. Cudahy, C. Laukamp, J.L. Walshe, et al. “White Mica as a Hyperspectral Tool in Exploration for the Sunrise Dam and Kanowna Belle Gold Deposits, Western Australia”. Econ. Geol. 2017; 112(5): 1153–1176. doi: 10.5382/econgeo.2017.4505.

Wang, A.

A. Wang, J.J. Freeman, B.L. Jolliff. “Understanding the Raman Spectral Features of Phyllosilicates”. J. Raman Spectrosc. 2015; 46: 829–845. doi: 10.1002/jrs.4680.

A. Wang, J.J. Freeman, B.L. Jolliff, I.M. Chou. “Sulfates on Mars: A Systematic Raman Spectroscopic Study of Hydration States of Magnesium Sulfates”. Geochim. Cosmochim. Acta. 2006; 70(24): 6118–6135. doi: 10.1016/j.gca.2006.05.022.

A. Wang, K. Kuebler, B. Jolliff, L.A. Haskin. “Mineralogy of a Martial Meteorite as Determined by Raman Spectroscopy”. J. Raman Spectrosc. 2004; 35(6): 504–514. doi: 10.1002/jrs.1175.

Wang, L.

L. Wang, M. Zhang, S.A.T. Redfern, Z. Zhang. “Dehydroxylation and Transformations of the 2:1 Phyllosilicate Pyrophyllite at Elevated Temperatures: An Infrared Spectroscopic Study”. Clays Clay Miner. 2002; 50(2): 272–283. doi: 10.1346/000986002760832874.

Wang, R.

R. Wang, T. Cudahy, C. Laukamp, J.L. Walshe, et al. “White Mica as a Hyperspectral Tool in Exploration for the Sunrise Dam and Kanowna Belle Gold Deposits, Western Australia”. Econ. Geol. 2017; 112(5): 1153–1176. doi: 10.5382/econgeo.2017.4505.

Watanabe, K.

J. Etoh, E. Izawa, K. Watanabe, S. Taguchi, R. Sekine. “Bladed Quartz and its Relationship to Gold Mineralization in the Hishikari Low-Sulfidation Epithermal Gold Deposit, Japan”. Econ. Geol. 2002; 97(8): 1841–1851. doi: 10.2113/gsecongeo.97.8.1841.

Weier, M.L.

R.L. Frost, R.A. Wills, M.L. Weier, W. Martens, J.T. Kloprogge. “A Raman Spectroscopic Study of Alunites”. J. Mol. Struct. 2006; 785(1–3): 123–132. doi: 10.1016/j.molstruc.2005.10.003.

White, N.C.

S.F. Simmons, N.C. White, D.A. John. “Geological Characteristics of Epithermal Precious and Base Metal Deposits”. Econ. Geol. 2005; 100: 485–522. doi: 10.5382/AV100.16.

N.C. White, J.W. Hedenquist. “Epithermal Gold Deposits: Styles, Characteristics, and Exploration”. SEG Newsletter. 1995; 23(1): 9–13.

Wilkinson, J.J.

L.C. Neal, J.J. Wilkinson, P.J. Mason, Z. Chang. “Spectral Characteristics of Propylitic Alteration Minerals as a Vectoring Tool for Porphyry Copper Deposits”. J. Geochem. Explor. 2018; 184(A): 179–198. doi: 10.1016/j.gexplo.2017.10.019.

Williams, H.

H. Williams. “Appalachian Orogen in Canada”. Can. J. Earth Sci. 1979; 16(3): 792–807. doi: 10.1139/e79-070.

Williams-Jones, A.E.

N. Gaillard, A.E. Williams-Jones, J.R. Clark, P. Lypaczewski, et al. “Mica Composition as a Vector to Gold Mineralization: Deciphering Hydrothermal and Metamorphic Effects in the Malartic District, Quebec”. Ore Geol. Rev. 2018; 95: 789–820. doi: 10.1016/j.oregeorev.2018.02.009.

Wills, R.A.

R.L. Frost, R.A. Wills, M.L. Weier, W. Martens, J.T. Kloprogge. “A Raman Spectroscopic Study of Alunites”. J. Mol. Struct. 2006; 785(1–3): 123–132. doi: 10.1016/j.molstruc.2005.10.003.

Yan, Y.

Y. Yan, D.A. Tillick, D.R. Peacor, S.F. Simmons. “Genesis of Dioctahedral Phyllosilicates during Hydrothermal Alteration of Volcanic Rocks: II. The Broadlands–Ohaaki Hydrothermal System, New Zealand”. Clays Clay Miner. 2001; 49: 141–155. doi: 10.1346/CCMN.2001.0490204.

Yang, K.

A. Thompson, K. Scott, J. Huntington, K. Yang. “Mapping Mineralogy with Reflectance Spectroscopy: Examples from Volcanogenic Massive Sulfide Deposits”. In: R. Bedell, A.P. Crósta, E. Grunsky, editors. Remote Sensing and Spectral Geology. Rev. Econ. Geol. 2009; 16: 1–16. doi: 10.5382/Rev.16.04.

Yoneda, A.

S. Zhai, E. Ito, A. Yoneda. “Effects of Pre-Heated Pyrophyllite Gaskets on High-Pressure Generation in the Kawai-Type Multi-Anvil Experiments”. High Press. Res. 2008; 28(3): 265–271. doi: 10.1080/08957950802454050.

Zanoni, G.

C. Arbiol, G.D. Layne, G. Zanoni, B. Segvic. “Characteristics and Genesis of Phyllosilicate Hydrothermal Assemblages from Neoproterozoic Epithermal Au–Ag Mineralization of the Avalon Zone of Newfoundland, Canada”. Appl. Clay Sci. 2021; 202: 105960doi: 10.1016/j.clay.2020.105960.

Zhai, S.

S. Zhai, E. Ito, A. Yoneda. “Effects of Pre-Heated Pyrophyllite Gaskets on High-Pressure Generation in the Kawai-Type Multi-Anvil Experiments”. High Press. Res. 2008; 28(3): 265–271. doi: 10.1080/08957950802454050.

Zhang, M.

L. Wang, M. Zhang, S.A.T. Redfern, Z. Zhang. “Dehydroxylation and Transformations of the 2:1 Phyllosilicate Pyrophyllite at Elevated Temperatures: An Infrared Spectroscopic Study”. Clays Clay Miner. 2002; 50(2): 272–283. doi: 10.1346/000986002760832874.

Zhang, S.

S. Zhang, G. Chu, J. Cheng, Y. Zhang, et al. “Short Wavelength Infrared (SWIR) Spectroscopy of Phyllosilicate Minerals from the Tonglushan Cu–Au–Fe Deposit, Eastern China: New Exploration Indicators for Concealed Skarn Orebodies”. Ore Geol. Rev. 2020; 122: 103516doi: 10.1016/j.oregeorev.(2020).103516.

Zhang, Y.

S. Zhang, G. Chu, J. Cheng, Y. Zhang, et al. “Short Wavelength Infrared (SWIR) Spectroscopy of Phyllosilicate Minerals from the Tonglushan Cu–Au–Fe Deposit, Eastern China: New Exploration Indicators for Concealed Skarn Orebodies”. Ore Geol. Rev. 2020; 122: 103516doi: 10.1016/j.oregeorev.(2020).103516.

Zhang, Z.

L. Wang, M. Zhang, S.A.T. Redfern, Z. Zhang. “Dehydroxylation and Transformations of the 2:1 Phyllosilicate Pyrophyllite at Elevated Temperatures: An Infrared Spectroscopic Study”. Clays Clay Miner. 2002; 50(2): 272–283. doi: 10.1346/000986002760832874.

Am. J. Sci (1)

O. Vidal, T. Parra, F. Trotet. “A Thermodynamic Model for Fe–Mg Aluminous Chlorite Using Data from Phase Equilibrium Experiments and Natural Pelitic Assemblages in the 100° to 600°, 1 to 25 kb range”. Am. J. Sci. 2001; 301(6): 557–592. doi: 10.2475/ajs.301.6.557.

Am. Mineral (2)

P.E. Rosenberg, G. Cliff. “The Formation of Pyrophyllite Solid Solutions”. Am. Mineral. 1980; 65: 1214–1219.

J.L. Bishop, E. Murad. “The Visible and Infrared Spectral Properties of Jarosite and Alunite”. Am. Mineral. 2005; 90(7): 1100–1107. doi: 10.2138/am.(2005).1700.

Amer. Mineral (1)

J. Cuadros, J.R. Michalski, V. Dekov, J.L. Bishop. “Octahedral Chemistry of 2:1 Clay Minerals and Hydroxyl Band Position in the Near-Infrared: Application to Mars”. Amer. Mineral. 2016; 101(3): 554–563. doi: 10.2138/am-2016-5366.

Analele Stiintifice de Universitatii A.I. Cuza din Iasi. Sect. 2, Geologie (1)

N. Buzgar, A. Buzatu, I.V. Sanislav. “The Raman Study of Certain Sulfates”. Analele Stiintifice de Universitatii A.I. Cuza din Iasi. Sect. 2, Geologie. 2009; 55: 5–23.

Appl. Clay Sci (2)

R.L. Frost, L. Rintoul. “Lattice Vibrations of Montmorillonite: An FT Raman and X-ray Diffraction Study”. Appl. Clay Sci. 1996; 11(2–4): 171–183. doi: 10.1016/S0169-1317(96)00017-8.

C. Arbiol, G.D. Layne, G. Zanoni, B. Segvic. “Characteristics and Genesis of Phyllosilicate Hydrothermal Assemblages from Neoproterozoic Epithermal Au–Ag Mineralization of the Avalon Zone of Newfoundland, Canada”. Appl. Clay Sci. 2021; 202: 105960doi: 10.1016/j.clay.2020.105960.

Appl. Spectrosc (1)

R.L. Frost, J.T. Kloprogge. “Raman Spectroscopy of Nontronites”. Appl. Spectrosc. 2000; 54(3): 402–405. doi: 10.1366/0003702001949483.

Bull. Miner (1)

F. Autefage, J.J. Couderc“Étude du Mécanisme de la Migration du Sodium et du Potassium au Cours de leur Analyse a la Microsonde Électronique”. Bull. Miner. 1980; 103: 623–629.

Can. J. Earth Sci (2)

H. Williams. “Appalachian Orogen in Canada”. Can. J. Earth Sci. 1979; 16(3): 792–807. doi: 10.1139/e79-070.

M.J. Buschette, S.J. Piercey. “Hydrothermal Alteration and Lithogeochemistry of the Boundary Volcanogenic Massive Sulphide Deposit, Central Newfoundland, Canada”. Can. J. Earth Sci. 2016; 53(5): 1–22. doi: 10.1139/cjes-2015-0237.

Chem. Geol (1)

C.L. Deyell, G.M. Dipple. “Equilibrium Mineral-Fluid Calculations and Their Application to the Solid Solution Between Alunite and Natroalunite in the El Indio-Pascua Belt of Chile and Argentina”. Chem. Geol. 2005; 215(1–4): 219–234. doi: 10.1016/j.chemgeo.2004.06.039.

Clay Miner (5)

A. Inoue, S. Inoué, M. Utada. “Application of Chlorite Thermometry to Estimation of Formation Temperature and Redox Conditions”. Clay Miner. 2018; 53(2): 143–158. doi: 10.1180/clm.2018.10.

S. Lantenois, J.M. Beny, F. Muller, R. Champallier. “Integration of Fe in Natural and Synthetic Al-Pyrophyllites: An Infrared Spectroscopic Study”. Clay Miner. 2007; 42(1): 129–141. doi: 10.1180/claymin.2007.042.1.09.

R.L. Frost, S.J. Van der Gaast. “Kaolinite Hydroxyls: A Raman Microscopy Study”. Clay Miner. 1997; 32(3): 471–484. doi: 10.1180/claymin.1997.032.3.09.

V.C. Farmer. “Differing Effects of Particle Size and Shape in the Infrared and Raman Spectra of Kaolinite”. Clay Miner. 1998; 33(4): 601–604. doi: 10.1180/claymin.1998.033.4.07.

R.L. Frost. “The Structure of the Kaolinite Minerals: A FT–Raman Study”. Clay Miner. 1997; 32(1): 65–77. doi: 10.1180/claymin.1997.032.1.08.

Clays Clay Miner (7)

R.L. Frost, H.F. Shurvell. “Raman Microprobe Spectroscopy of Halloysite”. Clays Clay Miner. 1997; 45(1): 68–72. doi: 10.1180/claymin.1997.032.1.08.

R.L. Frost. “Fourier Transform Raman Spectroscopy of Kaolinite, Dickite, and Halloysite”. Clays Clay Miner. 1995; 43: 191–195. doi: 10.1346/CCMN.1995.0430206.

Y. Yan, D.A. Tillick, D.R. Peacor, S.F. Simmons. “Genesis of Dioctahedral Phyllosilicates during Hydrothermal Alteration of Volcanic Rocks: II. The Broadlands–Ohaaki Hydrothermal System, New Zealand”. Clays Clay Miner. 2001; 49: 141–155. doi: 10.1346/CCMN.2001.0490204.

A. Inoue, A. Meunier, D. Beaufort. “Illite–Smectite Mixed-Layer Minerals in Felsic Volcaniclastic Rocks from Drill Cores, Kakkonda, Japan”. Clays Clay Miner. 2004; 52(1): 66–84. doi: 10.1346/CCMN.2004.0520108.

J. Carrillo-Rosúa, S. Morales-Ruano, I. Esteban-Arispe, P. Fenoll Hach-Alí. “Significance of Phyllosilicate Mineralogy and Mineral Chemistry in an Epithermal Environment. Insights from the Palai–Islica Au–Cu Deposit (Almería, SE Spain)”. Clays Clay Miner. 2009; 57: 1–24. doi: 10.1346/CCMN.2009.0570101.

L. Wang, M. Zhang, S.A.T. Redfern, Z. Zhang. “Dehydroxylation and Transformations of the 2:1 Phyllosilicate Pyrophyllite at Elevated Temperatures: An Infrared Spectroscopic Study”. Clays Clay Miner. 2002; 50(2): 272–283. doi: 10.1346/000986002760832874.

A.C. Prieto, J. Dubessy, M. Cathelineau. “Structure–Composition Relationships in Trioctahedral Chlorites; a Vibrational Spectroscopy Study”. Clays Clay Miner. 1991; 39: 531–539. doi: 10.1346/CCMN.1991.0390508.

Earth Planet. Sci. Lett (1)

Ph. Gillet, J.A. Barrat, E. Deloule, M. Wadhwa, et al. “Aqueous Alteration in the Northwest Africa 817 (NWA 817) Martian Meteorite”. Earth Planet. Sci. Lett. 2002; 203(1): 431–444. doi: 10.1016/S0012-821X(02)00835-X.

Econ. Geol (9)

M.P. Simpson, J.L. Mauk. “Hydrothermal Alteration and Veins at the Epithermal Au–Ag Deposits and Prospects of the Waitekauri Area, Hauraki Goldfield, New Zealand”. Econ. Geol. 2011; 106(6): 945–973. doi: 10.2113/econgeo.106.6.945.

R. Wang, T. Cudahy, C. Laukamp, J.L. Walshe, et al. “White Mica as a Hyperspectral Tool in Exploration for the Sunrise Dam and Kanowna Belle Gold Deposits, Western Australia”. Econ. Geol. 2017; 112(5): 1153–1176. doi: 10.5382/econgeo.2017.4505.

S.F. Simmons, N.C. White, D.A. John. “Geological Characteristics of Epithermal Precious and Base Metal Deposits”. Econ. Geol. 2005; 100: 485–522. doi: 10.5382/AV100.16.

W. Herrmann, M. Blake, M. Doyle, D. Huston, et al. “Short Wavelength Infrared (SWIR) Spectral Analysis of Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland”. Econ. Geol. 2001; 96(5): 939–955. doi: 10.2113/gsecongeo.96.5.939.

G.B. Dubé, G.R. Dunning, K. Lauziere. “Geology of the Hope Brook Mine, Newfoundland, Canada: A Preserved Late Proterozoic High-Sulfidation Epithermal Gold Deposit and its Implications for Exploration”. Econ. Geol. 1995; 93: 405–436. doi: 10.2113/gsecongeo.93.4.405.

J. Etoh, E. Izawa, K. Watanabe, S. Taguchi, R. Sekine. “Bladed Quartz and its Relationship to Gold Mineralization in the Hishikari Low-Sulfidation Epithermal Gold Deposit, Japan”. Econ. Geol. 2002; 97(8): 1841–1851. doi: 10.2113/gsecongeo.97.8.1841.

G.E. Graham, R.F. Kokaly, K.D. Kelley, T.M. Hoefen, et al. “Application of Imaging Spectroscopy for Mineral Exploration in Alaska: A Study over Porphyry Cu Deposits in the Eastern Alaska Range”. Econ. Geol. 2018; 113(2): 489–510. doi: 10.5382/econgeo.2018.4559.

R.H. Sillitoe. “Porphyry Copper Systems”. Econ. Geol. 2010; 105(1): 3–41. doi: 10.2113/gsecongeo.105.1.3.

S. Jones, W. Herrmann, J.B. Gemmell. “Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada”. Econ. Geol. 2005; 100(2): 273–294. doi: 10.2113/gsecongeo.100.2.273.

Geochim. Cosmochim. Acta (1)

A. Wang, J.J. Freeman, B.L. Jolliff, I.M. Chou. “Sulfates on Mars: A Systematic Raman Spectroscopic Study of Hydration States of Magnesium Sulfates”. Geochim. Cosmochim. Acta. 2006; 70(24): 6118–6135. doi: 10.1016/j.gca.2006.05.022.

Geology (1)

E.F. Duke. “Near Infrared Spectra of Muscovite, Tschermak Substitution, and Metamorphic Reaction Progress: Implications for Remote Sensing”. Geology. 1994; 22(7): 621–624. doi: 10.1130/0091-7613(1994)022<0621:NISOMT>2.3.CO;2.

Geosciences (1)

G. Ferrier, A. Ganas, R. Pope, A.J. Miles. “Prospectivity Mapping for Epithermal Deposits of Western Milos Using a Fuzzy Multi Criteria Evaluation Approach Parameterized by Airborne Hyperspectral Remote Sensing Data”. Geosciences. 2019; 9: 116doi: 10.3390/geosciences9030116.

High Press. Res (1)

S. Zhai, E. Ito, A. Yoneda. “Effects of Pre-Heated Pyrophyllite Gaskets on High-Pressure Generation in the Kawai-Type Multi-Anvil Experiments”. High Press. Res. 2008; 28(3): 265–271. doi: 10.1080/08957950802454050.

I. Application to the Analysis of Homogeneous Samples”. La Recherche Aérospatiale (1)

J.L. Pouchou, F. Pichoir. “A New Model for Quantitative Analyses. I. Application to the Analysis of Homogeneous Samples”. La Recherche Aérospatiale. 1984; 3: 13–38.

In: R. Bedell, A.P. Crósta, E. Grunsky, editors. Remote Sensing and Spectral Geology. Rev. Econ. Geol (1)

A. Thompson, K. Scott, J. Huntington, K. Yang. “Mapping Mineralogy with Reflectance Spectroscopy: Examples from Volcanogenic Massive Sulfide Deposits”. In: R. Bedell, A.P. Crósta, E. Grunsky, editors. Remote Sensing and Spectral Geology. Rev. Econ. Geol. 2009; 16: 1–16. doi: 10.5382/Rev.16.04.

In: R.D. Nance, M.D. Thompson, editors. Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic: Boulder, Colorado. Geol. Soc. Am. Special Paper (1)

S.J. O'Brien, B.H. O'Brien, G.R. Dunning, R.D. Tucker. “Late Neoproterozoic Avalonian and Related Peri-Gondwanan Rocks of the Newfoundland Appalachians”. In: R.D. Nance, M.D. Thompson, editors. Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic: Boulder, Colorado. Geol. Soc. Am. Special Paper. 1996; 304: 9–28. doi: 10.1130/0-8137-2304-3.9.

Int. J. Geosci (1)

B.J. Saikia, G. Parthasarathy, R.R. Borah, R. Borthakur. “Raman and FTIR Spectroscopic Evaluation of Clay Minerals and Estimation of Metal Contaminations in Natural Deposition of Surface Sediments from Brahmaputra River”. Int. J. Geosci. 2016; 7: 873–883. doi: 10.4236/ijg.2016.77064.

J. Geochem. Explor (1)

L.C. Neal, J.J. Wilkinson, P.J. Mason, Z. Chang. “Spectral Characteristics of Propylitic Alteration Minerals as a Vectoring Tool for Porphyry Copper Deposits”. J. Geochem. Explor. 2018; 184(A): 179–198. doi: 10.1016/j.gexplo.2017.10.019.

J. Geophys. Res. Sol. Earth (1)

R.N. Clark, T.V. King, M. Klejwa, G.A. Swayze, N. Vergo. “High Spectral Resolution Reflectance Spectroscopy of Minerals”. J. Geophys. Res. Sol. Earth. 1990; 95(B8): 12653–12680. doi: 10.1029/JB095iB08p12653.

J. Mol. Struct (2)

R.L. Frost, R.A. Wills, M.L. Weier, W. Martens, J.T. Kloprogge. “A Raman Spectroscopic Study of Alunites”. J. Mol. Struct. 2006; 785(1–3): 123–132. doi: 10.1016/j.molstruc.2005.10.003.

D.K. Breitinger, R. Kriegelstein, A. Bogner, R.G. Schwab, et al. “Vibrational Spectra of Synthetic Minerals of the Alunite and Crandallite Type”. J. Mol. Struct. 1997; 408–409: 287–290. doi: 10.1016/S0022-2860(96)09627-5.

J. Phys. C: Solid State Phys (1)

E. Loh. “Optical Vibrations in Sheet Silicates”. J. Phys. C: Solid State Phys. 1973; 6(6): 1091–1104. doi: 10.1088/0022-3719/6/6/022.

J. Raman Spectrosc (5)

V. Košařová D. Hradil, I. Němec, P. Bezdička, V. Kanickýa. “Microanalysis of Clay-Based Pigments in Painted Artworks by the Means of Raman Spectroscopy”. J. Raman Spectrosc. 2013; 44(11): 1570–1577. doi: 10.1002/jrs.4381.

A. Wang, K. Kuebler, B. Jolliff, L.A. Haskin. “Mineralogy of a Martial Meteorite as Determined by Raman Spectroscopy”. J. Raman Spectrosc. 2004; 35(6): 504–514. doi: 10.1002/jrs.1175.

A. Wang, J.J. Freeman, B.L. Jolliff. “Understanding the Raman Spectral Features of Phyllosilicates”. J. Raman Spectrosc. 2015; 46: 829–845. doi: 10.1002/jrs.4680.

J.L. Bishop, E. Murad. “Characterization of minerals and biogeochemical markers on Mars: A Raman and IR spectroscopic study of montmorillonite”. J. Raman Spectrosc. 2004; 35: 480–486. doi: 10.1002/jrs.1173.

R.L. Frost, S. Bahfenne, J. Čejka, J. Sejkora, et al. “Raman and Infrared Study of Phyllosilicates Containing Heavy Metals (Sb, Bi): Bismutoferrite and Chapmanite”. J. Raman Spectrosc. 2010; 41(7): 814–819. doi: 10.1002/jrs.2512.

J. Russ, J. Inorg. Chem (1)

M. Toumi, A. Tlili. “Rietveld Refinement and Vibrational Spectroscopic Study of Alunite from El Gnater, Central Tunisia”. J. Russ, J. Inorg. Chem. 2008; 53: 1845–1853. doi: 10.1134/S0036023608120048.

J. Solution Chem (1)

W.W. Rudolph, R. Mason. “Study of Aqueous Al2(SO4)3 Solution Under Hydrothermal Conditions: Sulfate Ion Pairing, Hydrolysis, and Formation of Hydronium Alunite”. J. Solution Chem. 2001; 30: 527–548. doi: 10.1023/A:1010334818580.

Mineral. J (1)

K. Omori. “Infrared Diffraction and the Far Infrared Spectra of Anhydrous Sulfates”. Mineral. J. 1968; 5(5): 334–354. doi: 10.2465/minerj(1953).5.334.

Mineral. Mag (1)

A. Tlili, D. Smith, J. Beny, H. Boyer. “A Raman Microprobe Study of Natural Micas”. Mineral. Mag. 1989; 53(370): 165–179. doi: 10.1180/minmag.1989.053.370.04.

Neues Jb. Miner. Abh (1)

J.T. Kloprogge, R.L. Frost. “An Infrared Emission Spectroscopic Study of Synthetic and Natural Pyrophyllite”. Neues Jb. Miner. Abh. 1999; 2: 62–74.

Ore Geol. Rev (4)

M.C. Tappert, B. Rivard, D. Giles, R. Tappert, A. Mauger. “The Mineral Chemistry, Near-Infrared, and Mid-Infrared Reflectance Spectroscopy of Phengite from the Olympic Dam IOCG Deposit, South Australia”. Ore Geol. Rev. 2013; 53: 26–38. doi: 10.1016/j.oregeorev.2012.12.006.

S. Zhang, G. Chu, J. Cheng, Y. Zhang, et al. “Short Wavelength Infrared (SWIR) Spectroscopy of Phyllosilicate Minerals from the Tonglushan Cu–Au–Fe Deposit, Eastern China: New Exploration Indicators for Concealed Skarn Orebodies”. Ore Geol. Rev. 2020; 122: 103516doi: 10.1016/j.oregeorev.(2020).103516.

J. Huang, H. Cheng, J. Han, X. Deng, et al. “Alteration Zonation and Short Wavelength Infrared (SWIR) Characteristics of the Honghai VMS Cu–Zn Deposit, Eastern Tianshan, NW China”. Ore Geol. Rev. 2018; 100: 263–279. doi: 10.1016/j.oregeorev.2017.02.037.

N. Gaillard, A.E. Williams-Jones, J.R. Clark, P. Lypaczewski, et al. “Mica Composition as a Vector to Gold Mineralization: Deciphering Hydrothermal and Metamorphic Effects in the Malartic District, Quebec”. Ore Geol. Rev. 2018; 95: 789–820. doi: 10.1016/j.oregeorev.2018.02.009.

Rev. Econ. Geol (3)

B.R. Berger, P.M. Bethke. “Geology and Geochemistry of Epithermal Systems”. Rev. Econ. Geol. 1985; 2: 298doi: 10.5382/Rev.02.

D.R. Cooke, S.F. Simmons. “Characteristics and Genesis of Epithermal Gold Deposits”. Rev. Econ. Geol. 2000; 13(2): 221–244. doi: 10.5382/Rev.13.06.

J.W. Hedenquist, A. Arribas, E. González-Urien. “Exploration for Epithermal Gold Deposits”. Rev. Econ. Geol. 2000; 13: 245–277. doi: 10.5382/Rev.13.07.

Rev. Mineral. Geochem (1)

R.E. Stoffregen, C.N. Alpers, J.L. Jambor. “Alunite–Jarosite Crystallography, Thermodynamics, and Geochronology”. Rev. Mineral. Geochem. 2000; 40(1): 453–479. doi: 10.2138/rmg.2000.40.9.

Sci. Lett (1)

H.E. Frimmel. “Earth's Continental Crustal Gold Endowment” Earth Planet. Sci. Lett. 2008; 267(1–2): 45–55. doi: 10.1016/j.epsl.2007.11.022.

Science (1)

J.L. Bishop, E.Z.N. Dobrea, N.K. McKeown, M. Parente, et al. “Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars”. Science. 2008; 321(5890): 830–833. doi: 10.1126/science.1159699.

SEG Newsletter (1)

N.C. White, J.W. Hedenquist. “Epithermal Gold Deposits: Styles, Characteristics, and Exploration”. SEG Newsletter. 1995; 23(1): 9–13.

Soc. Econ. Geol. News (1)

A.J.B. Thompson, P.L. Hauff, A.J. Robitaille. “Alteration Mapping in Exploration: Application of Short-Wave Infrared (SWIR) Spectroscopy”. Soc. Econ. Geol. News. 1999; 39: 15–27.

Spectrochim. Acta, Part A (1)

N. Maubec, A. Lahfid, C. Lerouge, W.K. Michel. “Characterization of Alunite Supergroup Minerals by Raman Spectroscopy”. Spectrochim. Acta, Part A. 2012; 96: 925–939. doi: 10.1016/j.saa.2012.07.094.

The Golden Cross Epithermal Ore Deposit, New Zealand”. Clays Clay Miner (1)

D.A. Tillick, D.R. Peacor, J.L. Mauk. “Genesis of Dioctahedral Phyllosilicates during Hydrothermal Alteration of Volcanic Rocks: I. The Golden Cross Epithermal Ore Deposit, New Zealand”. Clays Clay Miner. 2001; 49: 126–140. doi: 10.1346/CCMN.2001.0490203.

Other (16)

A. Kerr, H. Rafuse, G. Sparkes, J. Hinchey, H. Sandeman. “Visible/Infrared Spectroscopy (VIRS) as a Research Tool in Economic Geology: Background and Pilot Studies from Newfoundland and Labrador”. Current Res. (2011). Geological Survey Report 11–1: 145–166.

G.W. Sparkes, G.R. Dunning. “Late Neoproterozoic Epithermal Alteration and Mineralization in the Western Avalon Zone: A Summary of Mineralogical Investigations and New U/Pb Geochronological Results”. Current Res. (2014). Geological Survey Report 14–1: 99–128.

A. Arribas. “Characteristics of High-Sulfidation Epithermal Deposits, and their Relation to Magmatic Fluid”. In: J.F.H. Thompson, editor. Magmas, Fluids, and Ore Deposits. Miner. Assoc. Can. Short Course. (1995). 23: 419–454.

J.W. Hedenquist, E. Izawa, A. Arribas, N.C. White. “Epithermal Gold Deposits: Styles, Characteristics, and Exploration”. Resour. Geol. (1996). 1: 70.

W.A. Deer, R.A. Howie, J. Zussman. “An Introduction to the Rock-Forming Minerals. Longman, London. (1992). doi: 10.1180/DHZ.

F. Bergaya, G. Lagaly. Handbook of Clay Science. Amsterdam; Boston; Paris: Elsevier, (2013).

J.W. Hedenquist. “Mineralization Associated with Volcanic-Related Hydrothermal Systems in the Circum-Pacific Basin”. Am. Assoc. Pet. Geol. Conference. (1987). Pp. 513–524.

W.P. Gates, J.T. Kloprogge, J. Madejová, F. Bergaya. Infrared and Raman Spectroscopies of Clay Minerals. Amsterdam: Elsevier, 2017.

R. Hochleitner, N. Tarcea, G. Simon, W. Kiefer, J. Popp. “Micro-Raman Spectroscopy: A Valuable Tool for the Investigation of Extraterrestrial Material”. J. Raman Spectrosc. 2004. 35(6): 515–518. doi: 10.1002/jrs.1190.

W.B. White. “Order–Disorder Effects” In: V.C. Farmer, editor. The Infrared Spectra of Minerals. London: Mineralogical Society of Great Britain and Ireland, 1974. Vol. 4, Pp. 87–110. doi: 10.1180/mono-4.

S.J. O'Brien, B. Dubé, C.F. O'Driscoll, J. Mills. “Geological Setting of Gold Mineralization and Related Hydrothermal Alteration in Late Neoproterozoic (Post-640 Ma) Avalonian Rocs of Newfoundland, with a Review of the Coeval Gold Deposits Elsewhere in the Appalachian Avalonian Belt”. Current Res. 1998. Geological Survey Report 98-1: 93–124.

S.J. O'Brien, B. Dubé, C.F. O'Driscoll. “High-Sulphidation, Epithermal-Style Hydrothermal Systems in Late Neoproterozoic Avalonian Rocks on the Burin Peninsula, Newfoundland: Implications for Gold Exploration”. Current Res. 1999. Geological Survey Report 99-1: 275–296.

J.L. Pouchou, F. Pichoir, “‘PAP' Correction Procedure for Improved Quantitative Microanalysis”. In: J.T. Armstrong, editor. Microbeam Analysis. San Francisco: San Francisco Press, 1985. Pp. 104–106.

H. Li, L. Zhang, A.G. Christy. “The Correlation Between Raman Spectra and the Mineral Composition of Muscovite and Phengite”. In: L.F. Dobrzhinetskaya, S.W. Faryad, S. Wallis, S. Cuthbert, editors. Ultrahigh-Pressure Metamorphism: 25 Years After the Discovery of Coesite and Diamond. London: Elsevier, (2011). Chap. 7, Pp. 187-212. doi: 10.1016/B978-0-12-385144-4.00006-0.

C. Lerouge, C. Beny, C. Fléhoc, C. Guerrot, et al. “Constraints of Stable Isotopes, Raman Spectrometry on the Formation of the Advanced Argillic Alteration of the Breznik Epithermal Au Occurrence in Bulgaria: Impact of Weathering”. Paper presented at: 9th Biennial SGA Meeting 2007. Dublin, Ireland; August 19–23 (2007).

V.C. Farmer. “The Infrared Spectra of Minerals”. Mineralogical Society of Great Britain and Ireland. (1974). Monograph 4. doi: 10.1180/mono-4.

Supplementary Material (1)

NameDescription
Supplement 1       sj-zip-1-asp-10.1177_00037028211047869 - Supplemental material for Raman Spectroscopy Coupled with Reflectance Spectroscopy as a Tool for the Characterization of Key Hydrothermal Alteration Minerals in Epithermal Au–Ag Systems: Utility and Implications for Mineral Exploration

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved