Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 76,
  • Issue 5,
  • pp. 559-568
  • (2022)

Feasibility of In-Line Raman Spectroscopy for Quality Assessment in Food Industry: How Fast Can We Go?

Open Access Open Access

Abstract

Raman spectroscopy is a viable tool within process analytical technologies due to recent technological advances. In this article, we evaluate the feasibility of Raman spectroscopy for in-line applications in the food industry by estimating the concentration of the fatty acids EPA + DHA in ground salmon samples (n = 63) and residual bone concentration in samples of mechanically recovered ground chicken (n = 66). The samples were measured under industry like conditions: They moved on a conveyor belt through a dark cabinet where they were scanned with a wide area illumination standoff Raman probe. Such a setup should be able to handle relevant industrial conveyor belt speeds, and it was studied how different speeds (i.e., exposure times) influenced the signal-to-noise ratio (SNR) of the Raman spectra as well as the corresponding model performance. For all samples we applied speeds that resulted in 1 s, 2 s, 4 s, and 10 s exposure times. Samples were scanned in both heterogenous and homogenous state. The slowest speed (10 s exposure) yielded prediction errors (RMSECV) of 0.41%EPA + DHA and 0.59% ash for the salmon and chicken data sets, respectively. The more in-line relevant exposure time of 1 s resulted in increased RMSECV values, 0.84% EPA + DHA and 0.84% ash, respectively. The increase in prediction error correlated closely with the decrease in SNR. Further improvements of model performance were possible through different noise reduction strategies. Model performance for homogenous and heterogenous samples was similar, suggesting that the presented Raman scanning approach has the potential to work well also on intact heterogenous foods. The estimation errors obtained at these high speeds are likely acceptable for industrial use, but successful strategies to increase SNR will be key for widespread in-line use in the food industry.

© 2022 The Author(s)

PDF Article

References

  • View by:

  1. United Nations Department of Economic and Social Affairs. “Responsible consumption and production”. In: The Sustainable Development Goals Report. 2020. Pp. 48–49. doi:.
  2. J.P. Wold, M. Kermit, A. Woll. “Rapid Nondestructive Determination of Edible Meat Content in Crabs (Cancer Pagurus) by Near-Infrared Imaging Spectroscopy”. Appl. Spectrosc. 2010. 64(7): 691–699. doi:.
    [Crossref]
  3. V.H. Segtnan, M. Høy, F. Lundby, B. Narum, J.P. Wold. “Fat Distribution Analysis in Salmon Fillets Using Non-Contact Near Infrared Interactance Imaging: A Sampling and Calibration Strategy”. J. Near Infrared Spectrosc 2009. 17(5): 247–253. doi:.
    [Crossref]
  4. J.P. Wold, I. Måge, A. Løvland, K.W. Sanden, R. Ofstad. “Near-infrared Spectroscopy Detects Woody Breast Syndrome in Chicken Fillets by the Markers Protein Content and Degree of Water Binding”. Poult. Sci. 2019. 98(1): 480–490. doi:.
    [Crossref]
  5. Y. Ozaki, C.W. Huck, K.B. Beć. “Near-IR Spectroscopy and its Applications”. In: V.P. Gupta, editor. Molecular and Laser Spectroscopy: Advances and Applications. Amsterdam, Netherlands: Elsevier, 2017. Pp 11–38.
  6. M.Y. Bekhit, B. Grung, S.A. Mjøs. “Determination of Omega-3 Fatty Acids in Fish Oil Supplements Using Vibrational Spectroscopy and Chemometric Methods”. Appl. Spectrosc 2014. 68(10): 1190–1200. doi:.
    [Crossref]
  7. K.A. Esmonde-White, M. Cuellar, C. Uerpmann, L. Bruno, I.R. Lewis. “Raman Spectroscopy as a Process Analytical Technology for Pharmaceutical Manufacturing and Bioprocessing”. Anal. Bioanal. Chem. 2017. 409: 637–649. doi:.
    [Crossref]
  8. H. Wikström, I.R. Lewis, L.S. Taylor. “Comparison of Sampling Techniques for In-Line Monitoring Using Raman Spectroscopy”. Appl. Spectrosc. 2005. 59(7): 934–941. doi:.
    [Crossref]
  9. S.G. Wubshet, J.P. Wold, N.K. Afseth, U. Böcker, D. Lindberg. “Feed-Forward Prediction of Product Qualities in Enzymatic Protein Hydrolysis of Poultry By-products: A Spectroscopic Approach”. Food Bioprocess. Technol. 2018. 11: 2032–2043. doi:.
    [Crossref]
  10. S.G. Wubshet, J.P. Wold, U. Böcker. “Raman Spectroscopy for Quantification of Residual Calcium and Total Ash in Mechanically Deboned Chicken Meat”. Food Control. 2019. 95: 267–273. doi:.
    [Crossref]
  11. O. Monago-Maraña, J.P. Wold, R. Rødbotten, K.R. Dankel, N.K. Afseth. ”Raman, Near-infrared and Fluorescence Spectroscopy for Determination of Collagen Content in Ground Meat and Poultry By-products”. Food Sci. Technol. 2021. 140: 110592. doi:.
    [Crossref]
  12. P.V. Andersen, J.P. Wold, N.K. Afseth. “Assessment of Bulk Composition of Heterogeneous Food Matrices Using Raman Spectroscopy”. Appl. Spectrosc 2021. 75(10): 1278–1287. doi:.
    [Crossref]
  13. EFSA. “Scientific Opinion on the Public Health Risks Related to Mechanically Separated Meat (MSM) Derived from Poultry and Swine”. EFSA J. 2013. 11(3): 3137. doi:.
    [Crossref]
  14. J.P. Wold, M. Kermit, V.H. Segtnan. “Chemical Imaging of Heterogeneous Muscle Foods Using Near-Infrared Hyperspectral Imaging in Transmission Mode”. Appl. Spectrosc 2016. 70(6): 953–961. doi:.
    [Crossref]
  15. M. M Cascant, C. Breil, A.S. Fabiano-Tixier, F. Chemat, S. Garrigues. “Determination of Fatty Acids and Lipid Classes in Salmon Oil by Near Infrared Spectroscopy”. Food Chem. 2018. 239: 865–871. doi:.
    [Crossref]
  16. M.R. Brown, P.D. Kube, R.S. Taylor, N.G. Elliott. “Rapid Compositional Analysis of Atlantic Salmon (Salmo Salar) Using Visible-Near Infrared Reflectance Spectroscopy”. Aquacult. Res. 2014. 45(5): 798–811. doi:.
    [Crossref]
  17. C.E. Eskildsen, T. Næs, P.B. Skou, L.E. Solberg, K.R. Dankel. “Cage of Covariance in Calibration Modeling: Regressing Multiple and Strongly Correlated Response Variables onto a Low Rank Subspace of Explanatory Variables”. Chemom. Intell. Lab. Syst 2021. 213: 104311. doi:.
    [Crossref]
  18. N.K. Afseth, V.H. Segtnan, B.J. Marquardt, J.P. Wold. “Raman and Near-Infrared Spectroscopy for Quantification of Fat Composition in a Complex Food Model System”. Appl. Spectrosc 2005. 59(11): 1324–1332. doi:.
    [Crossref]
  19. N.K. Afseth, J.P. Wold, V.H. Segtnan. “The Potential of Raman Spectroscopy for Characterisation of the Fatty Acid Unsaturation of Salmon”. Anal. Chim. Acta. 2006. 572(1): 85–92. doi:.
    [Crossref]
  20. J.R. Beattie, S.E. Bell, C. Borgaard, A. Fearon, B.W. Moss. “Prediction of Adipose Tissue Composition Using Raman Spectroscopy: Average Properties and Individual Fatty Acids”. Lipids. 2006. 41(3): 287–294. doi:.
    [Crossref]
  21. D.P. Killeen, S.N. Marshall, E.J. Burgess, K.C. Gordon, N.B. Perry. “Raman Spectroscopy of Fish Oil Capsules: Polyunsaturated Fatty Acid Quantitation Plus Detection of Ethyl Esters and Oxidation”. J. Agric. Food Chem 2017. 65(17): 3551–3558. doi:.
    [Crossref]
  22. A. Savitzky, M.J. Golay. “Smoothing and Differentiation of Data by Simplified Least Squares Procedures”. Anal. Chem 1964. 36(8): 1627–1639. doi:.
    [Crossref]
  23. H. Martens, E. Stark. “Extended Multiplicative Signal Correction and Spectral Interference Subtraction: New Preprocessing Methods for Near Infrared Spectroscopy”. J. Pharm. Biomed. Anal 1991. 9(8): 625–635. doi:.
    [Crossref]
  24. K.H. Liland, A. Kohler, N.K. Afseth. “Model-Based Pre-Processing in Raman Spectroscopy of Biological Samples”. J. Raman Spectrosc 2016. 47(6): 643–650. doi:.
    [Crossref]
  25. P.H.C. Eilers, H.F.M. Boelens. “A Perfect Smoother”. Life Sci. 2003. 75(14): 3631–3636. doi:.
    [Crossref]
  26. K.H. Liland, T. Almøy, B.H. Mevik. “Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra”. Appl. Spectrosc 2010. 64(9): 1007–1016. doi:.
    [Crossref]
  27. H. Martens, T. Næs. Multivariate Calibration. Chichester, UK: John Wiley and Sons, 1989. Pp. 116–165.
  28. Å. Björck, U.G. Indahl. “Fast and Stable Partial Least Squares Modelling: A Benchmark Study with Theoretical Comments”. J. Chemom. 2017. 31(8). doi:.
    [Crossref]
  29. F. Westad, H. Martens. “Variable Selection in Near Infrared Spectroscopy Based on Significance Testing in Partial Least Squares Regression”. J. Near Infrared Spectrosc 2000. 8(2): 117–124. doi:.
    [Crossref]
  30. T.N. Tran, N.L. Afanador, L.M. Buydens, L. Blanchet. “Interpretation of Variable Importance in Partial Least Squares with Significance Multivariate Correlation (sMC)”. Chemom. Intell. Lab. Syst 2014. 138: 153–160. doi:.
    [Crossref]
  31. L. Eriksson, J. Trygg, S. Wold. “CV-ANOVA for Significance Testing of PLS and OPLS Models”. J. Chemom 2008. 22(11–12): 594–600. doi:.
    [Crossref]
  32. U.G. Indahl, T. Næs. “Evaluation of Alternative Spectral Feature Extraction Methods of Textural Images for Multivariate Modeling”. J. Chemom 1998. 12(4): 261–278. doi: 10.1002/(sici)1099-128x(199807/08)12:4{∖textless}261::aid-cem513{∖textgreater}3.3.co;2-q.
  33. J.P. Wold, K. Kvaal, B. Egelandsdal. “Quantification of Intramuscular Fat Content in Beef by Combining Autofluorescence Spectra and Autofluorescence Images”. Appl. Spectrosc 1999. 53(4): 448–456. doi:.
    [Crossref]
  34. S. Guo, C. Beleites, U. Neugebauer, S. Abalde-Cela, N.K. Afseth. “Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study”. Anal. Chem 2020. 92(24): 15745–15756. doi:.
    [Crossref]
  35. M.D. Morris, G.S. Mandair. “Raman Assessment of Bone Quality”. Clin. Orthop. Relat. Res. 2011. 469(8): 2160–2169. doi:.
    [Crossref]
  36. K. Czamara, K. Majzner, M.Z. Pacia, K. Kochan, A. Kaczor. “Raman Spectroscopy of Lipids: A Review”. J. Raman Spectrosc 2015. 46(1): 4–20. doi:.
    [Crossref]
  37. G. Socrates. “Alkenes, Oximes, Imines, Amidines, Azo compounds: C=C, C=N, N=N Groups”. In: G. Socrates, editor. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. Chichester, UK:John Wiley and Sons, 2004. p. 74.

2021 (3)

O. Monago-Maraña, J.P. Wold, R. Rødbotten, K.R. Dankel, N.K. Afseth. ”Raman, Near-infrared and Fluorescence Spectroscopy for Determination of Collagen Content in Ground Meat and Poultry By-products”. Food Sci. Technol. 2021. 140: 110592. doi:.
[Crossref]

P.V. Andersen, J.P. Wold, N.K. Afseth. “Assessment of Bulk Composition of Heterogeneous Food Matrices Using Raman Spectroscopy”. Appl. Spectrosc 2021. 75(10): 1278–1287. doi:.
[Crossref]

C.E. Eskildsen, T. Næs, P.B. Skou, L.E. Solberg, K.R. Dankel. “Cage of Covariance in Calibration Modeling: Regressing Multiple and Strongly Correlated Response Variables onto a Low Rank Subspace of Explanatory Variables”. Chemom. Intell. Lab. Syst 2021. 213: 104311. doi:.
[Crossref]

2020 (1)

S. Guo, C. Beleites, U. Neugebauer, S. Abalde-Cela, N.K. Afseth. “Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study”. Anal. Chem 2020. 92(24): 15745–15756. doi:.
[Crossref]

2019 (2)

J.P. Wold, I. Måge, A. Løvland, K.W. Sanden, R. Ofstad. “Near-infrared Spectroscopy Detects Woody Breast Syndrome in Chicken Fillets by the Markers Protein Content and Degree of Water Binding”. Poult. Sci. 2019. 98(1): 480–490. doi:.
[Crossref]

S.G. Wubshet, J.P. Wold, U. Böcker. “Raman Spectroscopy for Quantification of Residual Calcium and Total Ash in Mechanically Deboned Chicken Meat”. Food Control. 2019. 95: 267–273. doi:.
[Crossref]

2018 (2)

S.G. Wubshet, J.P. Wold, N.K. Afseth, U. Böcker, D. Lindberg. “Feed-Forward Prediction of Product Qualities in Enzymatic Protein Hydrolysis of Poultry By-products: A Spectroscopic Approach”. Food Bioprocess. Technol. 2018. 11: 2032–2043. doi:.
[Crossref]

M. M Cascant, C. Breil, A.S. Fabiano-Tixier, F. Chemat, S. Garrigues. “Determination of Fatty Acids and Lipid Classes in Salmon Oil by Near Infrared Spectroscopy”. Food Chem. 2018. 239: 865–871. doi:.
[Crossref]

2017 (3)

K.A. Esmonde-White, M. Cuellar, C. Uerpmann, L. Bruno, I.R. Lewis. “Raman Spectroscopy as a Process Analytical Technology for Pharmaceutical Manufacturing and Bioprocessing”. Anal. Bioanal. Chem. 2017. 409: 637–649. doi:.
[Crossref]

D.P. Killeen, S.N. Marshall, E.J. Burgess, K.C. Gordon, N.B. Perry. “Raman Spectroscopy of Fish Oil Capsules: Polyunsaturated Fatty Acid Quantitation Plus Detection of Ethyl Esters and Oxidation”. J. Agric. Food Chem 2017. 65(17): 3551–3558. doi:.
[Crossref]

Å. Björck, U.G. Indahl. “Fast and Stable Partial Least Squares Modelling: A Benchmark Study with Theoretical Comments”. J. Chemom. 2017. 31(8). doi:.
[Crossref]

2016 (2)

K.H. Liland, A. Kohler, N.K. Afseth. “Model-Based Pre-Processing in Raman Spectroscopy of Biological Samples”. J. Raman Spectrosc 2016. 47(6): 643–650. doi:.
[Crossref]

J.P. Wold, M. Kermit, V.H. Segtnan. “Chemical Imaging of Heterogeneous Muscle Foods Using Near-Infrared Hyperspectral Imaging in Transmission Mode”. Appl. Spectrosc 2016. 70(6): 953–961. doi:.
[Crossref]

2015 (1)

K. Czamara, K. Majzner, M.Z. Pacia, K. Kochan, A. Kaczor. “Raman Spectroscopy of Lipids: A Review”. J. Raman Spectrosc 2015. 46(1): 4–20. doi:.
[Crossref]

2014 (3)

T.N. Tran, N.L. Afanador, L.M. Buydens, L. Blanchet. “Interpretation of Variable Importance in Partial Least Squares with Significance Multivariate Correlation (sMC)”. Chemom. Intell. Lab. Syst 2014. 138: 153–160. doi:.
[Crossref]

M.Y. Bekhit, B. Grung, S.A. Mjøs. “Determination of Omega-3 Fatty Acids in Fish Oil Supplements Using Vibrational Spectroscopy and Chemometric Methods”. Appl. Spectrosc 2014. 68(10): 1190–1200. doi:.
[Crossref]

M.R. Brown, P.D. Kube, R.S. Taylor, N.G. Elliott. “Rapid Compositional Analysis of Atlantic Salmon (Salmo Salar) Using Visible-Near Infrared Reflectance Spectroscopy”. Aquacult. Res. 2014. 45(5): 798–811. doi:.
[Crossref]

2013 (1)

EFSA. “Scientific Opinion on the Public Health Risks Related to Mechanically Separated Meat (MSM) Derived from Poultry and Swine”. EFSA J. 2013. 11(3): 3137. doi:.
[Crossref]

2011 (1)

M.D. Morris, G.S. Mandair. “Raman Assessment of Bone Quality”. Clin. Orthop. Relat. Res. 2011. 469(8): 2160–2169. doi:.
[Crossref]

2010 (2)

K.H. Liland, T. Almøy, B.H. Mevik. “Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra”. Appl. Spectrosc 2010. 64(9): 1007–1016. doi:.
[Crossref]

J.P. Wold, M. Kermit, A. Woll. “Rapid Nondestructive Determination of Edible Meat Content in Crabs (Cancer Pagurus) by Near-Infrared Imaging Spectroscopy”. Appl. Spectrosc. 2010. 64(7): 691–699. doi:.
[Crossref]

2009 (1)

V.H. Segtnan, M. Høy, F. Lundby, B. Narum, J.P. Wold. “Fat Distribution Analysis in Salmon Fillets Using Non-Contact Near Infrared Interactance Imaging: A Sampling and Calibration Strategy”. J. Near Infrared Spectrosc 2009. 17(5): 247–253. doi:.
[Crossref]

2008 (1)

L. Eriksson, J. Trygg, S. Wold. “CV-ANOVA for Significance Testing of PLS and OPLS Models”. J. Chemom 2008. 22(11–12): 594–600. doi:.
[Crossref]

2006 (2)

N.K. Afseth, J.P. Wold, V.H. Segtnan. “The Potential of Raman Spectroscopy for Characterisation of the Fatty Acid Unsaturation of Salmon”. Anal. Chim. Acta. 2006. 572(1): 85–92. doi:.
[Crossref]

J.R. Beattie, S.E. Bell, C. Borgaard, A. Fearon, B.W. Moss. “Prediction of Adipose Tissue Composition Using Raman Spectroscopy: Average Properties and Individual Fatty Acids”. Lipids. 2006. 41(3): 287–294. doi:.
[Crossref]

2005 (2)

N.K. Afseth, V.H. Segtnan, B.J. Marquardt, J.P. Wold. “Raman and Near-Infrared Spectroscopy for Quantification of Fat Composition in a Complex Food Model System”. Appl. Spectrosc 2005. 59(11): 1324–1332. doi:.
[Crossref]

H. Wikström, I.R. Lewis, L.S. Taylor. “Comparison of Sampling Techniques for In-Line Monitoring Using Raman Spectroscopy”. Appl. Spectrosc. 2005. 59(7): 934–941. doi:.
[Crossref]

2003 (1)

P.H.C. Eilers, H.F.M. Boelens. “A Perfect Smoother”. Life Sci. 2003. 75(14): 3631–3636. doi:.
[Crossref]

2000 (1)

F. Westad, H. Martens. “Variable Selection in Near Infrared Spectroscopy Based on Significance Testing in Partial Least Squares Regression”. J. Near Infrared Spectrosc 2000. 8(2): 117–124. doi:.
[Crossref]

1999 (1)

J.P. Wold, K. Kvaal, B. Egelandsdal. “Quantification of Intramuscular Fat Content in Beef by Combining Autofluorescence Spectra and Autofluorescence Images”. Appl. Spectrosc 1999. 53(4): 448–456. doi:.
[Crossref]

1998 (1)

U.G. Indahl, T. Næs. “Evaluation of Alternative Spectral Feature Extraction Methods of Textural Images for Multivariate Modeling”. J. Chemom 1998. 12(4): 261–278. doi: 10.1002/(sici)1099-128x(199807/08)12:4{∖textless}261::aid-cem513{∖textgreater}3.3.co;2-q.

1991 (1)

H. Martens, E. Stark. “Extended Multiplicative Signal Correction and Spectral Interference Subtraction: New Preprocessing Methods for Near Infrared Spectroscopy”. J. Pharm. Biomed. Anal 1991. 9(8): 625–635. doi:.
[Crossref]

1964 (1)

A. Savitzky, M.J. Golay. “Smoothing and Differentiation of Data by Simplified Least Squares Procedures”. Anal. Chem 1964. 36(8): 1627–1639. doi:.
[Crossref]

Abalde-Cela, S.

S. Guo, C. Beleites, U. Neugebauer, S. Abalde-Cela, N.K. Afseth. “Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study”. Anal. Chem 2020. 92(24): 15745–15756. doi:.
[Crossref]

Afanador, N.L.

T.N. Tran, N.L. Afanador, L.M. Buydens, L. Blanchet. “Interpretation of Variable Importance in Partial Least Squares with Significance Multivariate Correlation (sMC)”. Chemom. Intell. Lab. Syst 2014. 138: 153–160. doi:.
[Crossref]

Afseth, N.K.

O. Monago-Maraña, J.P. Wold, R. Rødbotten, K.R. Dankel, N.K. Afseth. ”Raman, Near-infrared and Fluorescence Spectroscopy for Determination of Collagen Content in Ground Meat and Poultry By-products”. Food Sci. Technol. 2021. 140: 110592. doi:.
[Crossref]

P.V. Andersen, J.P. Wold, N.K. Afseth. “Assessment of Bulk Composition of Heterogeneous Food Matrices Using Raman Spectroscopy”. Appl. Spectrosc 2021. 75(10): 1278–1287. doi:.
[Crossref]

S. Guo, C. Beleites, U. Neugebauer, S. Abalde-Cela, N.K. Afseth. “Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study”. Anal. Chem 2020. 92(24): 15745–15756. doi:.
[Crossref]

S.G. Wubshet, J.P. Wold, N.K. Afseth, U. Böcker, D. Lindberg. “Feed-Forward Prediction of Product Qualities in Enzymatic Protein Hydrolysis of Poultry By-products: A Spectroscopic Approach”. Food Bioprocess. Technol. 2018. 11: 2032–2043. doi:.
[Crossref]

K.H. Liland, A. Kohler, N.K. Afseth. “Model-Based Pre-Processing in Raman Spectroscopy of Biological Samples”. J. Raman Spectrosc 2016. 47(6): 643–650. doi:.
[Crossref]

N.K. Afseth, J.P. Wold, V.H. Segtnan. “The Potential of Raman Spectroscopy for Characterisation of the Fatty Acid Unsaturation of Salmon”. Anal. Chim. Acta. 2006. 572(1): 85–92. doi:.
[Crossref]

N.K. Afseth, V.H. Segtnan, B.J. Marquardt, J.P. Wold. “Raman and Near-Infrared Spectroscopy for Quantification of Fat Composition in a Complex Food Model System”. Appl. Spectrosc 2005. 59(11): 1324–1332. doi:.
[Crossref]

Almøy, T.

K.H. Liland, T. Almøy, B.H. Mevik. “Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra”. Appl. Spectrosc 2010. 64(9): 1007–1016. doi:.
[Crossref]

Andersen, P.V.

P.V. Andersen, J.P. Wold, N.K. Afseth. “Assessment of Bulk Composition of Heterogeneous Food Matrices Using Raman Spectroscopy”. Appl. Spectrosc 2021. 75(10): 1278–1287. doi:.
[Crossref]

Beattie, J.R.

J.R. Beattie, S.E. Bell, C. Borgaard, A. Fearon, B.W. Moss. “Prediction of Adipose Tissue Composition Using Raman Spectroscopy: Average Properties and Individual Fatty Acids”. Lipids. 2006. 41(3): 287–294. doi:.
[Crossref]

Bec, K.B.

Y. Ozaki, C.W. Huck, K.B. Beć. “Near-IR Spectroscopy and its Applications”. In: V.P. Gupta, editor. Molecular and Laser Spectroscopy: Advances and Applications. Amsterdam, Netherlands: Elsevier, 2017. Pp 11–38.

Bekhit, M.Y.

M.Y. Bekhit, B. Grung, S.A. Mjøs. “Determination of Omega-3 Fatty Acids in Fish Oil Supplements Using Vibrational Spectroscopy and Chemometric Methods”. Appl. Spectrosc 2014. 68(10): 1190–1200. doi:.
[Crossref]

Beleites, C.

S. Guo, C. Beleites, U. Neugebauer, S. Abalde-Cela, N.K. Afseth. “Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study”. Anal. Chem 2020. 92(24): 15745–15756. doi:.
[Crossref]

Bell, S.E.

J.R. Beattie, S.E. Bell, C. Borgaard, A. Fearon, B.W. Moss. “Prediction of Adipose Tissue Composition Using Raman Spectroscopy: Average Properties and Individual Fatty Acids”. Lipids. 2006. 41(3): 287–294. doi:.
[Crossref]

Björck, Å.

Å. Björck, U.G. Indahl. “Fast and Stable Partial Least Squares Modelling: A Benchmark Study with Theoretical Comments”. J. Chemom. 2017. 31(8). doi:.
[Crossref]

Blanchet, L.

T.N. Tran, N.L. Afanador, L.M. Buydens, L. Blanchet. “Interpretation of Variable Importance in Partial Least Squares with Significance Multivariate Correlation (sMC)”. Chemom. Intell. Lab. Syst 2014. 138: 153–160. doi:.
[Crossref]

Böcker, U.

S.G. Wubshet, J.P. Wold, U. Böcker. “Raman Spectroscopy for Quantification of Residual Calcium and Total Ash in Mechanically Deboned Chicken Meat”. Food Control. 2019. 95: 267–273. doi:.
[Crossref]

S.G. Wubshet, J.P. Wold, N.K. Afseth, U. Böcker, D. Lindberg. “Feed-Forward Prediction of Product Qualities in Enzymatic Protein Hydrolysis of Poultry By-products: A Spectroscopic Approach”. Food Bioprocess. Technol. 2018. 11: 2032–2043. doi:.
[Crossref]

Boelens, H.F.M.

P.H.C. Eilers, H.F.M. Boelens. “A Perfect Smoother”. Life Sci. 2003. 75(14): 3631–3636. doi:.
[Crossref]

Borgaard, C.

J.R. Beattie, S.E. Bell, C. Borgaard, A. Fearon, B.W. Moss. “Prediction of Adipose Tissue Composition Using Raman Spectroscopy: Average Properties and Individual Fatty Acids”. Lipids. 2006. 41(3): 287–294. doi:.
[Crossref]

Breil, C.

M. M Cascant, C. Breil, A.S. Fabiano-Tixier, F. Chemat, S. Garrigues. “Determination of Fatty Acids and Lipid Classes in Salmon Oil by Near Infrared Spectroscopy”. Food Chem. 2018. 239: 865–871. doi:.
[Crossref]

Brown, M.R.

M.R. Brown, P.D. Kube, R.S. Taylor, N.G. Elliott. “Rapid Compositional Analysis of Atlantic Salmon (Salmo Salar) Using Visible-Near Infrared Reflectance Spectroscopy”. Aquacult. Res. 2014. 45(5): 798–811. doi:.
[Crossref]

Bruno, L.

K.A. Esmonde-White, M. Cuellar, C. Uerpmann, L. Bruno, I.R. Lewis. “Raman Spectroscopy as a Process Analytical Technology for Pharmaceutical Manufacturing and Bioprocessing”. Anal. Bioanal. Chem. 2017. 409: 637–649. doi:.
[Crossref]

Burgess, E.J.

D.P. Killeen, S.N. Marshall, E.J. Burgess, K.C. Gordon, N.B. Perry. “Raman Spectroscopy of Fish Oil Capsules: Polyunsaturated Fatty Acid Quantitation Plus Detection of Ethyl Esters and Oxidation”. J. Agric. Food Chem 2017. 65(17): 3551–3558. doi:.
[Crossref]

Buydens, L.M.

T.N. Tran, N.L. Afanador, L.M. Buydens, L. Blanchet. “Interpretation of Variable Importance in Partial Least Squares with Significance Multivariate Correlation (sMC)”. Chemom. Intell. Lab. Syst 2014. 138: 153–160. doi:.
[Crossref]

Chemat, F.

M. M Cascant, C. Breil, A.S. Fabiano-Tixier, F. Chemat, S. Garrigues. “Determination of Fatty Acids and Lipid Classes in Salmon Oil by Near Infrared Spectroscopy”. Food Chem. 2018. 239: 865–871. doi:.
[Crossref]

Cuellar, M.

K.A. Esmonde-White, M. Cuellar, C. Uerpmann, L. Bruno, I.R. Lewis. “Raman Spectroscopy as a Process Analytical Technology for Pharmaceutical Manufacturing and Bioprocessing”. Anal. Bioanal. Chem. 2017. 409: 637–649. doi:.
[Crossref]

Czamara, K.

K. Czamara, K. Majzner, M.Z. Pacia, K. Kochan, A. Kaczor. “Raman Spectroscopy of Lipids: A Review”. J. Raman Spectrosc 2015. 46(1): 4–20. doi:.
[Crossref]

Dankel, K.R.

O. Monago-Maraña, J.P. Wold, R. Rødbotten, K.R. Dankel, N.K. Afseth. ”Raman, Near-infrared and Fluorescence Spectroscopy for Determination of Collagen Content in Ground Meat and Poultry By-products”. Food Sci. Technol. 2021. 140: 110592. doi:.
[Crossref]

C.E. Eskildsen, T. Næs, P.B. Skou, L.E. Solberg, K.R. Dankel. “Cage of Covariance in Calibration Modeling: Regressing Multiple and Strongly Correlated Response Variables onto a Low Rank Subspace of Explanatory Variables”. Chemom. Intell. Lab. Syst 2021. 213: 104311. doi:.
[Crossref]

Egelandsdal, B.

J.P. Wold, K. Kvaal, B. Egelandsdal. “Quantification of Intramuscular Fat Content in Beef by Combining Autofluorescence Spectra and Autofluorescence Images”. Appl. Spectrosc 1999. 53(4): 448–456. doi:.
[Crossref]

Eilers, P.H.C.

P.H.C. Eilers, H.F.M. Boelens. “A Perfect Smoother”. Life Sci. 2003. 75(14): 3631–3636. doi:.
[Crossref]

Elliott, N.G.

M.R. Brown, P.D. Kube, R.S. Taylor, N.G. Elliott. “Rapid Compositional Analysis of Atlantic Salmon (Salmo Salar) Using Visible-Near Infrared Reflectance Spectroscopy”. Aquacult. Res. 2014. 45(5): 798–811. doi:.
[Crossref]

Eriksson, L.

L. Eriksson, J. Trygg, S. Wold. “CV-ANOVA for Significance Testing of PLS and OPLS Models”. J. Chemom 2008. 22(11–12): 594–600. doi:.
[Crossref]

Eskildsen, C.E.

C.E. Eskildsen, T. Næs, P.B. Skou, L.E. Solberg, K.R. Dankel. “Cage of Covariance in Calibration Modeling: Regressing Multiple and Strongly Correlated Response Variables onto a Low Rank Subspace of Explanatory Variables”. Chemom. Intell. Lab. Syst 2021. 213: 104311. doi:.
[Crossref]

Esmonde-White, K.A.

K.A. Esmonde-White, M. Cuellar, C. Uerpmann, L. Bruno, I.R. Lewis. “Raman Spectroscopy as a Process Analytical Technology for Pharmaceutical Manufacturing and Bioprocessing”. Anal. Bioanal. Chem. 2017. 409: 637–649. doi:.
[Crossref]

Fabiano-Tixier, A.S.

M. M Cascant, C. Breil, A.S. Fabiano-Tixier, F. Chemat, S. Garrigues. “Determination of Fatty Acids and Lipid Classes in Salmon Oil by Near Infrared Spectroscopy”. Food Chem. 2018. 239: 865–871. doi:.
[Crossref]

Fearon, A.

J.R. Beattie, S.E. Bell, C. Borgaard, A. Fearon, B.W. Moss. “Prediction of Adipose Tissue Composition Using Raman Spectroscopy: Average Properties and Individual Fatty Acids”. Lipids. 2006. 41(3): 287–294. doi:.
[Crossref]

Garrigues, S.

M. M Cascant, C. Breil, A.S. Fabiano-Tixier, F. Chemat, S. Garrigues. “Determination of Fatty Acids and Lipid Classes in Salmon Oil by Near Infrared Spectroscopy”. Food Chem. 2018. 239: 865–871. doi:.
[Crossref]

Golay, M.J.

A. Savitzky, M.J. Golay. “Smoothing and Differentiation of Data by Simplified Least Squares Procedures”. Anal. Chem 1964. 36(8): 1627–1639. doi:.
[Crossref]

Gordon, K.C.

D.P. Killeen, S.N. Marshall, E.J. Burgess, K.C. Gordon, N.B. Perry. “Raman Spectroscopy of Fish Oil Capsules: Polyunsaturated Fatty Acid Quantitation Plus Detection of Ethyl Esters and Oxidation”. J. Agric. Food Chem 2017. 65(17): 3551–3558. doi:.
[Crossref]

Grung, B.

M.Y. Bekhit, B. Grung, S.A. Mjøs. “Determination of Omega-3 Fatty Acids in Fish Oil Supplements Using Vibrational Spectroscopy and Chemometric Methods”. Appl. Spectrosc 2014. 68(10): 1190–1200. doi:.
[Crossref]

Guo, S.

S. Guo, C. Beleites, U. Neugebauer, S. Abalde-Cela, N.K. Afseth. “Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study”. Anal. Chem 2020. 92(24): 15745–15756. doi:.
[Crossref]

Høy, M.

V.H. Segtnan, M. Høy, F. Lundby, B. Narum, J.P. Wold. “Fat Distribution Analysis in Salmon Fillets Using Non-Contact Near Infrared Interactance Imaging: A Sampling and Calibration Strategy”. J. Near Infrared Spectrosc 2009. 17(5): 247–253. doi:.
[Crossref]

Huck, C.W.

Y. Ozaki, C.W. Huck, K.B. Beć. “Near-IR Spectroscopy and its Applications”. In: V.P. Gupta, editor. Molecular and Laser Spectroscopy: Advances and Applications. Amsterdam, Netherlands: Elsevier, 2017. Pp 11–38.

Indahl, U.G.

Å. Björck, U.G. Indahl. “Fast and Stable Partial Least Squares Modelling: A Benchmark Study with Theoretical Comments”. J. Chemom. 2017. 31(8). doi:.
[Crossref]

U.G. Indahl, T. Næs. “Evaluation of Alternative Spectral Feature Extraction Methods of Textural Images for Multivariate Modeling”. J. Chemom 1998. 12(4): 261–278. doi: 10.1002/(sici)1099-128x(199807/08)12:4{∖textless}261::aid-cem513{∖textgreater}3.3.co;2-q.

Kaczor, A.

K. Czamara, K. Majzner, M.Z. Pacia, K. Kochan, A. Kaczor. “Raman Spectroscopy of Lipids: A Review”. J. Raman Spectrosc 2015. 46(1): 4–20. doi:.
[Crossref]

Kermit, M.

J.P. Wold, M. Kermit, V.H. Segtnan. “Chemical Imaging of Heterogeneous Muscle Foods Using Near-Infrared Hyperspectral Imaging in Transmission Mode”. Appl. Spectrosc 2016. 70(6): 953–961. doi:.
[Crossref]

J.P. Wold, M. Kermit, A. Woll. “Rapid Nondestructive Determination of Edible Meat Content in Crabs (Cancer Pagurus) by Near-Infrared Imaging Spectroscopy”. Appl. Spectrosc. 2010. 64(7): 691–699. doi:.
[Crossref]

Killeen, D.P.

D.P. Killeen, S.N. Marshall, E.J. Burgess, K.C. Gordon, N.B. Perry. “Raman Spectroscopy of Fish Oil Capsules: Polyunsaturated Fatty Acid Quantitation Plus Detection of Ethyl Esters and Oxidation”. J. Agric. Food Chem 2017. 65(17): 3551–3558. doi:.
[Crossref]

Kochan, K.

K. Czamara, K. Majzner, M.Z. Pacia, K. Kochan, A. Kaczor. “Raman Spectroscopy of Lipids: A Review”. J. Raman Spectrosc 2015. 46(1): 4–20. doi:.
[Crossref]

Kohler, A.

K.H. Liland, A. Kohler, N.K. Afseth. “Model-Based Pre-Processing in Raman Spectroscopy of Biological Samples”. J. Raman Spectrosc 2016. 47(6): 643–650. doi:.
[Crossref]

Kube, P.D.

M.R. Brown, P.D. Kube, R.S. Taylor, N.G. Elliott. “Rapid Compositional Analysis of Atlantic Salmon (Salmo Salar) Using Visible-Near Infrared Reflectance Spectroscopy”. Aquacult. Res. 2014. 45(5): 798–811. doi:.
[Crossref]

Kvaal, K.

J.P. Wold, K. Kvaal, B. Egelandsdal. “Quantification of Intramuscular Fat Content in Beef by Combining Autofluorescence Spectra and Autofluorescence Images”. Appl. Spectrosc 1999. 53(4): 448–456. doi:.
[Crossref]

Lewis, I.R.

K.A. Esmonde-White, M. Cuellar, C. Uerpmann, L. Bruno, I.R. Lewis. “Raman Spectroscopy as a Process Analytical Technology for Pharmaceutical Manufacturing and Bioprocessing”. Anal. Bioanal. Chem. 2017. 409: 637–649. doi:.
[Crossref]

H. Wikström, I.R. Lewis, L.S. Taylor. “Comparison of Sampling Techniques for In-Line Monitoring Using Raman Spectroscopy”. Appl. Spectrosc. 2005. 59(7): 934–941. doi:.
[Crossref]

Liland, K.H.

K.H. Liland, A. Kohler, N.K. Afseth. “Model-Based Pre-Processing in Raman Spectroscopy of Biological Samples”. J. Raman Spectrosc 2016. 47(6): 643–650. doi:.
[Crossref]

K.H. Liland, T. Almøy, B.H. Mevik. “Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra”. Appl. Spectrosc 2010. 64(9): 1007–1016. doi:.
[Crossref]

Lindberg, D.

S.G. Wubshet, J.P. Wold, N.K. Afseth, U. Böcker, D. Lindberg. “Feed-Forward Prediction of Product Qualities in Enzymatic Protein Hydrolysis of Poultry By-products: A Spectroscopic Approach”. Food Bioprocess. Technol. 2018. 11: 2032–2043. doi:.
[Crossref]

Løvland, A.

J.P. Wold, I. Måge, A. Løvland, K.W. Sanden, R. Ofstad. “Near-infrared Spectroscopy Detects Woody Breast Syndrome in Chicken Fillets by the Markers Protein Content and Degree of Water Binding”. Poult. Sci. 2019. 98(1): 480–490. doi:.
[Crossref]

Lundby, F.

V.H. Segtnan, M. Høy, F. Lundby, B. Narum, J.P. Wold. “Fat Distribution Analysis in Salmon Fillets Using Non-Contact Near Infrared Interactance Imaging: A Sampling and Calibration Strategy”. J. Near Infrared Spectrosc 2009. 17(5): 247–253. doi:.
[Crossref]

M Cascant, M.

M. M Cascant, C. Breil, A.S. Fabiano-Tixier, F. Chemat, S. Garrigues. “Determination of Fatty Acids and Lipid Classes in Salmon Oil by Near Infrared Spectroscopy”. Food Chem. 2018. 239: 865–871. doi:.
[Crossref]

Måge, I.

J.P. Wold, I. Måge, A. Løvland, K.W. Sanden, R. Ofstad. “Near-infrared Spectroscopy Detects Woody Breast Syndrome in Chicken Fillets by the Markers Protein Content and Degree of Water Binding”. Poult. Sci. 2019. 98(1): 480–490. doi:.
[Crossref]

Majzner, K.

K. Czamara, K. Majzner, M.Z. Pacia, K. Kochan, A. Kaczor. “Raman Spectroscopy of Lipids: A Review”. J. Raman Spectrosc 2015. 46(1): 4–20. doi:.
[Crossref]

Mandair, G.S.

M.D. Morris, G.S. Mandair. “Raman Assessment of Bone Quality”. Clin. Orthop. Relat. Res. 2011. 469(8): 2160–2169. doi:.
[Crossref]

Marquardt, B.J.

N.K. Afseth, V.H. Segtnan, B.J. Marquardt, J.P. Wold. “Raman and Near-Infrared Spectroscopy for Quantification of Fat Composition in a Complex Food Model System”. Appl. Spectrosc 2005. 59(11): 1324–1332. doi:.
[Crossref]

Marshall, S.N.

D.P. Killeen, S.N. Marshall, E.J. Burgess, K.C. Gordon, N.B. Perry. “Raman Spectroscopy of Fish Oil Capsules: Polyunsaturated Fatty Acid Quantitation Plus Detection of Ethyl Esters and Oxidation”. J. Agric. Food Chem 2017. 65(17): 3551–3558. doi:.
[Crossref]

Martens, H.

F. Westad, H. Martens. “Variable Selection in Near Infrared Spectroscopy Based on Significance Testing in Partial Least Squares Regression”. J. Near Infrared Spectrosc 2000. 8(2): 117–124. doi:.
[Crossref]

H. Martens, E. Stark. “Extended Multiplicative Signal Correction and Spectral Interference Subtraction: New Preprocessing Methods for Near Infrared Spectroscopy”. J. Pharm. Biomed. Anal 1991. 9(8): 625–635. doi:.
[Crossref]

H. Martens, T. Næs. Multivariate Calibration. Chichester, UK: John Wiley and Sons, 1989. Pp. 116–165.

Mevik, B.H.

K.H. Liland, T. Almøy, B.H. Mevik. “Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra”. Appl. Spectrosc 2010. 64(9): 1007–1016. doi:.
[Crossref]

Mjøs, S.A.

M.Y. Bekhit, B. Grung, S.A. Mjøs. “Determination of Omega-3 Fatty Acids in Fish Oil Supplements Using Vibrational Spectroscopy and Chemometric Methods”. Appl. Spectrosc 2014. 68(10): 1190–1200. doi:.
[Crossref]

Monago-Maraña, O.

O. Monago-Maraña, J.P. Wold, R. Rødbotten, K.R. Dankel, N.K. Afseth. ”Raman, Near-infrared and Fluorescence Spectroscopy for Determination of Collagen Content in Ground Meat and Poultry By-products”. Food Sci. Technol. 2021. 140: 110592. doi:.
[Crossref]

Morris, M.D.

M.D. Morris, G.S. Mandair. “Raman Assessment of Bone Quality”. Clin. Orthop. Relat. Res. 2011. 469(8): 2160–2169. doi:.
[Crossref]

Moss, B.W.

J.R. Beattie, S.E. Bell, C. Borgaard, A. Fearon, B.W. Moss. “Prediction of Adipose Tissue Composition Using Raman Spectroscopy: Average Properties and Individual Fatty Acids”. Lipids. 2006. 41(3): 287–294. doi:.
[Crossref]

Næs, T.

C.E. Eskildsen, T. Næs, P.B. Skou, L.E. Solberg, K.R. Dankel. “Cage of Covariance in Calibration Modeling: Regressing Multiple and Strongly Correlated Response Variables onto a Low Rank Subspace of Explanatory Variables”. Chemom. Intell. Lab. Syst 2021. 213: 104311. doi:.
[Crossref]

U.G. Indahl, T. Næs. “Evaluation of Alternative Spectral Feature Extraction Methods of Textural Images for Multivariate Modeling”. J. Chemom 1998. 12(4): 261–278. doi: 10.1002/(sici)1099-128x(199807/08)12:4{∖textless}261::aid-cem513{∖textgreater}3.3.co;2-q.

H. Martens, T. Næs. Multivariate Calibration. Chichester, UK: John Wiley and Sons, 1989. Pp. 116–165.

Narum, B.

V.H. Segtnan, M. Høy, F. Lundby, B. Narum, J.P. Wold. “Fat Distribution Analysis in Salmon Fillets Using Non-Contact Near Infrared Interactance Imaging: A Sampling and Calibration Strategy”. J. Near Infrared Spectrosc 2009. 17(5): 247–253. doi:.
[Crossref]

Neugebauer, U.

S. Guo, C. Beleites, U. Neugebauer, S. Abalde-Cela, N.K. Afseth. “Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study”. Anal. Chem 2020. 92(24): 15745–15756. doi:.
[Crossref]

Ofstad, R.

J.P. Wold, I. Måge, A. Løvland, K.W. Sanden, R. Ofstad. “Near-infrared Spectroscopy Detects Woody Breast Syndrome in Chicken Fillets by the Markers Protein Content and Degree of Water Binding”. Poult. Sci. 2019. 98(1): 480–490. doi:.
[Crossref]

Ozaki, Y.

Y. Ozaki, C.W. Huck, K.B. Beć. “Near-IR Spectroscopy and its Applications”. In: V.P. Gupta, editor. Molecular and Laser Spectroscopy: Advances and Applications. Amsterdam, Netherlands: Elsevier, 2017. Pp 11–38.

Pacia, M.Z.

K. Czamara, K. Majzner, M.Z. Pacia, K. Kochan, A. Kaczor. “Raman Spectroscopy of Lipids: A Review”. J. Raman Spectrosc 2015. 46(1): 4–20. doi:.
[Crossref]

Perry, N.B.

D.P. Killeen, S.N. Marshall, E.J. Burgess, K.C. Gordon, N.B. Perry. “Raman Spectroscopy of Fish Oil Capsules: Polyunsaturated Fatty Acid Quantitation Plus Detection of Ethyl Esters and Oxidation”. J. Agric. Food Chem 2017. 65(17): 3551–3558. doi:.
[Crossref]

Rødbotten, R.

O. Monago-Maraña, J.P. Wold, R. Rødbotten, K.R. Dankel, N.K. Afseth. ”Raman, Near-infrared and Fluorescence Spectroscopy for Determination of Collagen Content in Ground Meat and Poultry By-products”. Food Sci. Technol. 2021. 140: 110592. doi:.
[Crossref]

Sanden, K.W.

J.P. Wold, I. Måge, A. Løvland, K.W. Sanden, R. Ofstad. “Near-infrared Spectroscopy Detects Woody Breast Syndrome in Chicken Fillets by the Markers Protein Content and Degree of Water Binding”. Poult. Sci. 2019. 98(1): 480–490. doi:.
[Crossref]

Savitzky, A.

A. Savitzky, M.J. Golay. “Smoothing and Differentiation of Data by Simplified Least Squares Procedures”. Anal. Chem 1964. 36(8): 1627–1639. doi:.
[Crossref]

Segtnan, V.H.

J.P. Wold, M. Kermit, V.H. Segtnan. “Chemical Imaging of Heterogeneous Muscle Foods Using Near-Infrared Hyperspectral Imaging in Transmission Mode”. Appl. Spectrosc 2016. 70(6): 953–961. doi:.
[Crossref]

V.H. Segtnan, M. Høy, F. Lundby, B. Narum, J.P. Wold. “Fat Distribution Analysis in Salmon Fillets Using Non-Contact Near Infrared Interactance Imaging: A Sampling and Calibration Strategy”. J. Near Infrared Spectrosc 2009. 17(5): 247–253. doi:.
[Crossref]

N.K. Afseth, J.P. Wold, V.H. Segtnan. “The Potential of Raman Spectroscopy for Characterisation of the Fatty Acid Unsaturation of Salmon”. Anal. Chim. Acta. 2006. 572(1): 85–92. doi:.
[Crossref]

N.K. Afseth, V.H. Segtnan, B.J. Marquardt, J.P. Wold. “Raman and Near-Infrared Spectroscopy for Quantification of Fat Composition in a Complex Food Model System”. Appl. Spectrosc 2005. 59(11): 1324–1332. doi:.
[Crossref]

Skou, P.B.

C.E. Eskildsen, T. Næs, P.B. Skou, L.E. Solberg, K.R. Dankel. “Cage of Covariance in Calibration Modeling: Regressing Multiple and Strongly Correlated Response Variables onto a Low Rank Subspace of Explanatory Variables”. Chemom. Intell. Lab. Syst 2021. 213: 104311. doi:.
[Crossref]

Socrates, G.

G. Socrates. “Alkenes, Oximes, Imines, Amidines, Azo compounds: C=C, C=N, N=N Groups”. In: G. Socrates, editor. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. Chichester, UK:John Wiley and Sons, 2004. p. 74.

Solberg, L.E.

C.E. Eskildsen, T. Næs, P.B. Skou, L.E. Solberg, K.R. Dankel. “Cage of Covariance in Calibration Modeling: Regressing Multiple and Strongly Correlated Response Variables onto a Low Rank Subspace of Explanatory Variables”. Chemom. Intell. Lab. Syst 2021. 213: 104311. doi:.
[Crossref]

Stark, E.

H. Martens, E. Stark. “Extended Multiplicative Signal Correction and Spectral Interference Subtraction: New Preprocessing Methods for Near Infrared Spectroscopy”. J. Pharm. Biomed. Anal 1991. 9(8): 625–635. doi:.
[Crossref]

Taylor, L.S.

H. Wikström, I.R. Lewis, L.S. Taylor. “Comparison of Sampling Techniques for In-Line Monitoring Using Raman Spectroscopy”. Appl. Spectrosc. 2005. 59(7): 934–941. doi:.
[Crossref]

Taylor, R.S.

M.R. Brown, P.D. Kube, R.S. Taylor, N.G. Elliott. “Rapid Compositional Analysis of Atlantic Salmon (Salmo Salar) Using Visible-Near Infrared Reflectance Spectroscopy”. Aquacult. Res. 2014. 45(5): 798–811. doi:.
[Crossref]

Tran, T.N.

T.N. Tran, N.L. Afanador, L.M. Buydens, L. Blanchet. “Interpretation of Variable Importance in Partial Least Squares with Significance Multivariate Correlation (sMC)”. Chemom. Intell. Lab. Syst 2014. 138: 153–160. doi:.
[Crossref]

Trygg, J.

L. Eriksson, J. Trygg, S. Wold. “CV-ANOVA for Significance Testing of PLS and OPLS Models”. J. Chemom 2008. 22(11–12): 594–600. doi:.
[Crossref]

Uerpmann, C.

K.A. Esmonde-White, M. Cuellar, C. Uerpmann, L. Bruno, I.R. Lewis. “Raman Spectroscopy as a Process Analytical Technology for Pharmaceutical Manufacturing and Bioprocessing”. Anal. Bioanal. Chem. 2017. 409: 637–649. doi:.
[Crossref]

Westad, F.

F. Westad, H. Martens. “Variable Selection in Near Infrared Spectroscopy Based on Significance Testing in Partial Least Squares Regression”. J. Near Infrared Spectrosc 2000. 8(2): 117–124. doi:.
[Crossref]

Wikström, H.

H. Wikström, I.R. Lewis, L.S. Taylor. “Comparison of Sampling Techniques for In-Line Monitoring Using Raman Spectroscopy”. Appl. Spectrosc. 2005. 59(7): 934–941. doi:.
[Crossref]

Wold, J.P.

O. Monago-Maraña, J.P. Wold, R. Rødbotten, K.R. Dankel, N.K. Afseth. ”Raman, Near-infrared and Fluorescence Spectroscopy for Determination of Collagen Content in Ground Meat and Poultry By-products”. Food Sci. Technol. 2021. 140: 110592. doi:.
[Crossref]

P.V. Andersen, J.P. Wold, N.K. Afseth. “Assessment of Bulk Composition of Heterogeneous Food Matrices Using Raman Spectroscopy”. Appl. Spectrosc 2021. 75(10): 1278–1287. doi:.
[Crossref]

S.G. Wubshet, J.P. Wold, U. Böcker. “Raman Spectroscopy for Quantification of Residual Calcium and Total Ash in Mechanically Deboned Chicken Meat”. Food Control. 2019. 95: 267–273. doi:.
[Crossref]

J.P. Wold, I. Måge, A. Løvland, K.W. Sanden, R. Ofstad. “Near-infrared Spectroscopy Detects Woody Breast Syndrome in Chicken Fillets by the Markers Protein Content and Degree of Water Binding”. Poult. Sci. 2019. 98(1): 480–490. doi:.
[Crossref]

S.G. Wubshet, J.P. Wold, N.K. Afseth, U. Böcker, D. Lindberg. “Feed-Forward Prediction of Product Qualities in Enzymatic Protein Hydrolysis of Poultry By-products: A Spectroscopic Approach”. Food Bioprocess. Technol. 2018. 11: 2032–2043. doi:.
[Crossref]

J.P. Wold, M. Kermit, V.H. Segtnan. “Chemical Imaging of Heterogeneous Muscle Foods Using Near-Infrared Hyperspectral Imaging in Transmission Mode”. Appl. Spectrosc 2016. 70(6): 953–961. doi:.
[Crossref]

J.P. Wold, M. Kermit, A. Woll. “Rapid Nondestructive Determination of Edible Meat Content in Crabs (Cancer Pagurus) by Near-Infrared Imaging Spectroscopy”. Appl. Spectrosc. 2010. 64(7): 691–699. doi:.
[Crossref]

V.H. Segtnan, M. Høy, F. Lundby, B. Narum, J.P. Wold. “Fat Distribution Analysis in Salmon Fillets Using Non-Contact Near Infrared Interactance Imaging: A Sampling and Calibration Strategy”. J. Near Infrared Spectrosc 2009. 17(5): 247–253. doi:.
[Crossref]

N.K. Afseth, J.P. Wold, V.H. Segtnan. “The Potential of Raman Spectroscopy for Characterisation of the Fatty Acid Unsaturation of Salmon”. Anal. Chim. Acta. 2006. 572(1): 85–92. doi:.
[Crossref]

N.K. Afseth, V.H. Segtnan, B.J. Marquardt, J.P. Wold. “Raman and Near-Infrared Spectroscopy for Quantification of Fat Composition in a Complex Food Model System”. Appl. Spectrosc 2005. 59(11): 1324–1332. doi:.
[Crossref]

J.P. Wold, K. Kvaal, B. Egelandsdal. “Quantification of Intramuscular Fat Content in Beef by Combining Autofluorescence Spectra and Autofluorescence Images”. Appl. Spectrosc 1999. 53(4): 448–456. doi:.
[Crossref]

Wold, S.

L. Eriksson, J. Trygg, S. Wold. “CV-ANOVA for Significance Testing of PLS and OPLS Models”. J. Chemom 2008. 22(11–12): 594–600. doi:.
[Crossref]

Woll, A.

J.P. Wold, M. Kermit, A. Woll. “Rapid Nondestructive Determination of Edible Meat Content in Crabs (Cancer Pagurus) by Near-Infrared Imaging Spectroscopy”. Appl. Spectrosc. 2010. 64(7): 691–699. doi:.
[Crossref]

Wubshet, S.G.

S.G. Wubshet, J.P. Wold, U. Böcker. “Raman Spectroscopy for Quantification of Residual Calcium and Total Ash in Mechanically Deboned Chicken Meat”. Food Control. 2019. 95: 267–273. doi:.
[Crossref]

S.G. Wubshet, J.P. Wold, N.K. Afseth, U. Böcker, D. Lindberg. “Feed-Forward Prediction of Product Qualities in Enzymatic Protein Hydrolysis of Poultry By-products: A Spectroscopic Approach”. Food Bioprocess. Technol. 2018. 11: 2032–2043. doi:.
[Crossref]

Anal. Bioanal. Chem (1)

K.A. Esmonde-White, M. Cuellar, C. Uerpmann, L. Bruno, I.R. Lewis. “Raman Spectroscopy as a Process Analytical Technology for Pharmaceutical Manufacturing and Bioprocessing”. Anal. Bioanal. Chem. 2017. 409: 637–649. doi:.
[Crossref]

Anal. Chem (2)

A. Savitzky, M.J. Golay. “Smoothing and Differentiation of Data by Simplified Least Squares Procedures”. Anal. Chem 1964. 36(8): 1627–1639. doi:.
[Crossref]

S. Guo, C. Beleites, U. Neugebauer, S. Abalde-Cela, N.K. Afseth. “Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study”. Anal. Chem 2020. 92(24): 15745–15756. doi:.
[Crossref]

Anal. Chim. Acta (1)

N.K. Afseth, J.P. Wold, V.H. Segtnan. “The Potential of Raman Spectroscopy for Characterisation of the Fatty Acid Unsaturation of Salmon”. Anal. Chim. Acta. 2006. 572(1): 85–92. doi:.
[Crossref]

Appl. Spectrosc (8)

N.K. Afseth, V.H. Segtnan, B.J. Marquardt, J.P. Wold. “Raman and Near-Infrared Spectroscopy for Quantification of Fat Composition in a Complex Food Model System”. Appl. Spectrosc 2005. 59(11): 1324–1332. doi:.
[Crossref]

K.H. Liland, T. Almøy, B.H. Mevik. “Optimal Choice of Baseline Correction for Multivariate Calibration of Spectra”. Appl. Spectrosc 2010. 64(9): 1007–1016. doi:.
[Crossref]

H. Wikström, I.R. Lewis, L.S. Taylor. “Comparison of Sampling Techniques for In-Line Monitoring Using Raman Spectroscopy”. Appl. Spectrosc. 2005. 59(7): 934–941. doi:.
[Crossref]

J.P. Wold, M. Kermit, A. Woll. “Rapid Nondestructive Determination of Edible Meat Content in Crabs (Cancer Pagurus) by Near-Infrared Imaging Spectroscopy”. Appl. Spectrosc. 2010. 64(7): 691–699. doi:.
[Crossref]

M.Y. Bekhit, B. Grung, S.A. Mjøs. “Determination of Omega-3 Fatty Acids in Fish Oil Supplements Using Vibrational Spectroscopy and Chemometric Methods”. Appl. Spectrosc 2014. 68(10): 1190–1200. doi:.
[Crossref]

P.V. Andersen, J.P. Wold, N.K. Afseth. “Assessment of Bulk Composition of Heterogeneous Food Matrices Using Raman Spectroscopy”. Appl. Spectrosc 2021. 75(10): 1278–1287. doi:.
[Crossref]

J.P. Wold, M. Kermit, V.H. Segtnan. “Chemical Imaging of Heterogeneous Muscle Foods Using Near-Infrared Hyperspectral Imaging in Transmission Mode”. Appl. Spectrosc 2016. 70(6): 953–961. doi:.
[Crossref]

J.P. Wold, K. Kvaal, B. Egelandsdal. “Quantification of Intramuscular Fat Content in Beef by Combining Autofluorescence Spectra and Autofluorescence Images”. Appl. Spectrosc 1999. 53(4): 448–456. doi:.
[Crossref]

Aquacult. Res (1)

M.R. Brown, P.D. Kube, R.S. Taylor, N.G. Elliott. “Rapid Compositional Analysis of Atlantic Salmon (Salmo Salar) Using Visible-Near Infrared Reflectance Spectroscopy”. Aquacult. Res. 2014. 45(5): 798–811. doi:.
[Crossref]

Chemom. Intell. Lab. Syst (2)

C.E. Eskildsen, T. Næs, P.B. Skou, L.E. Solberg, K.R. Dankel. “Cage of Covariance in Calibration Modeling: Regressing Multiple and Strongly Correlated Response Variables onto a Low Rank Subspace of Explanatory Variables”. Chemom. Intell. Lab. Syst 2021. 213: 104311. doi:.
[Crossref]

T.N. Tran, N.L. Afanador, L.M. Buydens, L. Blanchet. “Interpretation of Variable Importance in Partial Least Squares with Significance Multivariate Correlation (sMC)”. Chemom. Intell. Lab. Syst 2014. 138: 153–160. doi:.
[Crossref]

Clin. Orthop. Relat. Res (1)

M.D. Morris, G.S. Mandair. “Raman Assessment of Bone Quality”. Clin. Orthop. Relat. Res. 2011. 469(8): 2160–2169. doi:.
[Crossref]

EFSA J (1)

EFSA. “Scientific Opinion on the Public Health Risks Related to Mechanically Separated Meat (MSM) Derived from Poultry and Swine”. EFSA J. 2013. 11(3): 3137. doi:.
[Crossref]

Food Bioprocess. Technol (1)

S.G. Wubshet, J.P. Wold, N.K. Afseth, U. Böcker, D. Lindberg. “Feed-Forward Prediction of Product Qualities in Enzymatic Protein Hydrolysis of Poultry By-products: A Spectroscopic Approach”. Food Bioprocess. Technol. 2018. 11: 2032–2043. doi:.
[Crossref]

Food Chem (1)

M. M Cascant, C. Breil, A.S. Fabiano-Tixier, F. Chemat, S. Garrigues. “Determination of Fatty Acids and Lipid Classes in Salmon Oil by Near Infrared Spectroscopy”. Food Chem. 2018. 239: 865–871. doi:.
[Crossref]

Food Control (1)

S.G. Wubshet, J.P. Wold, U. Böcker. “Raman Spectroscopy for Quantification of Residual Calcium and Total Ash in Mechanically Deboned Chicken Meat”. Food Control. 2019. 95: 267–273. doi:.
[Crossref]

Food Sci. Technol (1)

O. Monago-Maraña, J.P. Wold, R. Rødbotten, K.R. Dankel, N.K. Afseth. ”Raman, Near-infrared and Fluorescence Spectroscopy for Determination of Collagen Content in Ground Meat and Poultry By-products”. Food Sci. Technol. 2021. 140: 110592. doi:.
[Crossref]

J. Agric. Food Chem (1)

D.P. Killeen, S.N. Marshall, E.J. Burgess, K.C. Gordon, N.B. Perry. “Raman Spectroscopy of Fish Oil Capsules: Polyunsaturated Fatty Acid Quantitation Plus Detection of Ethyl Esters and Oxidation”. J. Agric. Food Chem 2017. 65(17): 3551–3558. doi:.
[Crossref]

J. Chemom (3)

Å. Björck, U.G. Indahl. “Fast and Stable Partial Least Squares Modelling: A Benchmark Study with Theoretical Comments”. J. Chemom. 2017. 31(8). doi:.
[Crossref]

L. Eriksson, J. Trygg, S. Wold. “CV-ANOVA for Significance Testing of PLS and OPLS Models”. J. Chemom 2008. 22(11–12): 594–600. doi:.
[Crossref]

U.G. Indahl, T. Næs. “Evaluation of Alternative Spectral Feature Extraction Methods of Textural Images for Multivariate Modeling”. J. Chemom 1998. 12(4): 261–278. doi: 10.1002/(sici)1099-128x(199807/08)12:4{∖textless}261::aid-cem513{∖textgreater}3.3.co;2-q.

J. Near Infrared Spectrosc (2)

F. Westad, H. Martens. “Variable Selection in Near Infrared Spectroscopy Based on Significance Testing in Partial Least Squares Regression”. J. Near Infrared Spectrosc 2000. 8(2): 117–124. doi:.
[Crossref]

V.H. Segtnan, M. Høy, F. Lundby, B. Narum, J.P. Wold. “Fat Distribution Analysis in Salmon Fillets Using Non-Contact Near Infrared Interactance Imaging: A Sampling and Calibration Strategy”. J. Near Infrared Spectrosc 2009. 17(5): 247–253. doi:.
[Crossref]

J. Pharm. Biomed. Anal (1)

H. Martens, E. Stark. “Extended Multiplicative Signal Correction and Spectral Interference Subtraction: New Preprocessing Methods for Near Infrared Spectroscopy”. J. Pharm. Biomed. Anal 1991. 9(8): 625–635. doi:.
[Crossref]

J. Raman Spectrosc (2)

K.H. Liland, A. Kohler, N.K. Afseth. “Model-Based Pre-Processing in Raman Spectroscopy of Biological Samples”. J. Raman Spectrosc 2016. 47(6): 643–650. doi:.
[Crossref]

K. Czamara, K. Majzner, M.Z. Pacia, K. Kochan, A. Kaczor. “Raman Spectroscopy of Lipids: A Review”. J. Raman Spectrosc 2015. 46(1): 4–20. doi:.
[Crossref]

Life Sci (1)

P.H.C. Eilers, H.F.M. Boelens. “A Perfect Smoother”. Life Sci. 2003. 75(14): 3631–3636. doi:.
[Crossref]

Lipids (1)

J.R. Beattie, S.E. Bell, C. Borgaard, A. Fearon, B.W. Moss. “Prediction of Adipose Tissue Composition Using Raman Spectroscopy: Average Properties and Individual Fatty Acids”. Lipids. 2006. 41(3): 287–294. doi:.
[Crossref]

Poult. Sci (1)

J.P. Wold, I. Måge, A. Løvland, K.W. Sanden, R. Ofstad. “Near-infrared Spectroscopy Detects Woody Breast Syndrome in Chicken Fillets by the Markers Protein Content and Degree of Water Binding”. Poult. Sci. 2019. 98(1): 480–490. doi:.
[Crossref]

Other (4)

Y. Ozaki, C.W. Huck, K.B. Beć. “Near-IR Spectroscopy and its Applications”. In: V.P. Gupta, editor. Molecular and Laser Spectroscopy: Advances and Applications. Amsterdam, Netherlands: Elsevier, 2017. Pp 11–38.

United Nations Department of Economic and Social Affairs. “Responsible consumption and production”. In: The Sustainable Development Goals Report. 2020. Pp. 48–49. doi:.

G. Socrates. “Alkenes, Oximes, Imines, Amidines, Azo compounds: C=C, C=N, N=N Groups”. In: G. Socrates, editor. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. Chichester, UK:John Wiley and Sons, 2004. p. 74.

H. Martens, T. Næs. Multivariate Calibration. Chichester, UK: John Wiley and Sons, 1989. Pp. 116–165.

Supplementary Material (1)

NameDescription
Supplement 1       sj-pdf-1-asp-10.1177_00037028211056931 – Supplemental Material for Feasibility of In-Line Raman Spectroscopy for Quality Assessment in Food Industry: How Fast Can We Go?

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved