Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 32,
  • Issue 4,
  • pp. 377-380
  • (1978)

A New, Accurate Method for the Measurement of Rise Velocities in Laminar Flames

Not Accessible

Your library or personal account may give you access

Abstract

A novel technique is introduced for the measurement of rise velocities of hot, laminar flames. The new technique is straightforward to implement, rapid to employ, and more accurate than previous methods based on the observation of moving heated particles. In the method, tiny individual droplets of a solution containing alkali or alkaline earth elements are repetitively introduced into the flame to be examined. The small cloud of atomic vapor which is produced upon atomization of a droplet is then monitored photo-metrically as it passes two well-defined points in the flame. Knowledge of the distance between the points and measurement of the time required for the atoms to traverse it thus enables the flame velocity to be calculated. Conveniently, velocity measurements with this technique are localized in the flame, thereby permitting spatial variations in flame velocity to be examined. Moreover, the negligible mass of the moving, measured atom cloud eliminates error otherwise caused by gravitational attraction and its decelerating effect. The utility of this new technique is demonstrated through the measurement of localized velocities in a laminar, air-acetylene flame.

PDF Article
More Like This
Tunable diode-laser measurement of carbon monoxide concentration and temperature in a laminar methane–air diffusion flame

J. Houston Miller, Salma Elreedy, Bijan Ahvazi, F. Woldu, and P. Hassanzadeh
Appl. Opt. 32(30) 6082-6089 (1993)

Measurements of hydroxyl concentrations and lifetimes in laminar flames using picosecond time-resolved laser-induced fluorescence

Thomas A. Reichardt, Michael S. Klassen, Galen B. King, and Normand M. Laurendeau
Appl. Opt. 35(12) 2125-2139 (1996)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.