Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 42,
  • Issue 5,
  • pp. 819-826
  • (1988)

Fourier Deconvolution of the Amide I Raman Band of Proteins as Related to Conformation

Not Accessible

Your library or personal account may give you access

Abstract

Fourier deconvolution has been employed to enhance the resolution of the amide I Raman band of nine proteins found in milk and/or other foods. The broad band was resolved into several components. The overall shape of the amide I Raman band of proteins was found to be nearly Gaussian or to be composed of Gaussian components. A Gaussian function was therefore used for deconvolution. The results obtained were more detailed than those obtained with the Lorentzian approximation usually employed. The resolved band components were assigned to specific protein conformations. The frequencies and assignments are in good agreement with previous Raman work based on entirely different procedures. The band areas of the resolved components appear to reflect the fraction of any given conformation in a protein. Semiquantitative estimations of protein conformation are in reasonable agreement with data obtained by x-ray diffraction and by infrared methods.

PDF Article
More Like This
Analysis of SARS-CoV-2 spike RBD binding to ACE2 and its inhibition by fungal cohaerin C using surface enhanced Raman spectroscopy

Christoph Wetzel, Linda Jansen-Olliges, Marc Stadler, Frank Surup, Carsten Zeilinger, and Bernhard Roth
Biomed. Opt. Express 14(8) 4097-4111 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.