Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 46,
  • Issue 2,
  • pp. 219-224
  • (1992)

The Application of Linear PA/FT-IR to Polymer-Related Problems

Not Accessible

Your library or personal account may give you access

Abstract

A simplified method has been developed which allows the computation of linear photoacoustic FT-IR spectra using only one sample and one reference interferogram from a commercial, rapid-scan spectrometer. The application of linear computation to photoacoustic infrared data can produce spectra similar to transmission spectra through the reduction, if not elimination, of the saturation artifacts typical of amplitude computation, the usual mode of producing a PA/FT-IR spectrum or a transmission mode spectrum. Comparison of the resulting linear spectra with amplitude spectra has been used to demonstrate the existence of surface layers on top of substrates. Qualitative identification of the surface layer is easier in this mode than in the case where amplitude spectra are obtainted at the extremes of instrument mirror velocity. Additionally, information concerning a polymer matrix in the presence of up to 25 wt % carbon black is contained in linear photoacoustic spectra. Linear photoacoustic FT-IR spectra of carbon-filled samples are easier to interpret in comparison to spectra obtained by amplitude methods.

PDF Article
More Like This
Recent applications of FT-IR spectroscopy to polymer systems

J. L. Koenig and M. K. Antoon
Appl. Opt. 17(9) 1374-1385 (1978)

Quantitative Fourier transform IR photoacoustic spectroscopy of condensed phases

Y. C. Teng and B. S. H. Royce
Appl. Opt. 21(1) 77-80 (1982)

Accurate infrared transmittance measurements on optical filters using an FT-IR spectrometer

David A. C. Compton, John Drab, and Howard S. Barr
Appl. Opt. 29(19) 2908-2912 (1990)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.