Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 51,
  • Issue 3,
  • pp. 407-415
  • (1997)

Self-Modeling Mixture Analysis Applied to FT-Raman Spectral Data of Hydrogen Peroxide Activation by Nitriles

Not Accessible

Your library or personal account may give you access

Abstract

In the analytical environment, spectral data resulting from analysis of samples often represent mixtures of several components. Extraction of information about pure components of these kinds of mixtures is a major problem, especially when reference spectra are not available or when unstable intermediates are formed. Self-modeling multivariate mixture analysis has been developed for this type of problem. In this paper two examples will be used to show the potential of this technique coupled with FT-Raman spectroscopy to elucidate reaction mechanisms and to follow in situ the kinetics of chemical transformations.

PDF Article
More Like This
Chemometrics applied quantitative analysis of iron oxide mixtures by terahertz spectroscopy

Ying Li, Tian-Yao Zhang, Zhao-Hui Zhang, Jian-Feng Yan, Xuan Zhao, Xiao-Yan Zhao, Xing-Yue Li, Xian-Hao Wu, Lu Yin, Yuan Yuan, and Jian-Mei Guo
Appl. Opt. 62(5) 1167-1174 (2023)

Label-free detection of hydrogen peroxide-induced oxidative stress in human retinal pigment epithelium cells via laser tweezers Raman spectroscopy

Yang Chen, ZhiQiang Wang, Yan Huang, ShangYuan Feng, ZuCi Zheng, XiuJie Liu, and MengMeng Liu
Biomed. Opt. Express 10(2) 500-513 (2019)

Generation of spectral clusters in a mixture of noble and Raman-active gases

Pooria Hosseini, Amir Abdolvand, and Philip St.J. Russell
Opt. Lett. 41(23) 5543-5546 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.