Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 52,
  • Issue 12,
  • pp. 1554-1568
  • (1998)

Interference of Linear and Nonlinear Optical Effects in Second-Harmonic Generation from Metal/Liquid Interfaces

Not Accessible

Your library or personal account may give you access

Abstract

When a metal/liquid interface is probed with second-harmonic generation, the experimental data can be severely complicated by mixed signatures of linear and nonlinear optical properties of the interface. This problem is demonstrated and clarified in this report with computer simulations for selected electrochemical systems. A phenomenological framework for these simulations is developed. The first- and second-order surface susceptibilities of the metal are treated on equal footing, and their variations due to adsorbate effects are analyzed. Analytical and simulated results are presented for two specific groups of adsorbates. Representative experimental systems of these two groups (electrodeposited Cu and Te on polycrystalline Au) are analyzed in further detail. The calculations are in full agreement with the previously published experimental data for these systems. The present formalism can be extended to other systems and, in a systematic manner, can facilitate the analysis of second-harmonic data for electrochemical systems.

PDF Article
More Like This
Experiments on optical second-harmonic generation as a surface probe of electrodes

G. L. Richmond, H. M. Rojhantalab, J. M. Robinson, and V. L. Shannon
J. Opt. Soc. Am. B 4(2) 228-236 (1987)

Magnetization-induced-second-harmonic generation from surfaces and interfaces

Andrei Kirilyuk and Theo Rasing
J. Opt. Soc. Am. B 22(1) 148-167 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.