Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 55,
  • Issue 10,
  • pp. 1291-1296
  • (2001)

Direct Solids Atomic Emission Spectrometric Analysis of Metal Samples by "Laser-Induced Argon Spark Ablation" Coupled to ICP-OES

Not Accessible

Your library or personal account may give you access

Abstract

A new type of laser ablation system (laser-induced argon spark atomizer) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was used for the direct analysis of compact metallic samples. The material is ablated with the aid of a Nd:YAG laser (λ = 1064 nm, 300 mJ/pulse, ν = 4-20 Hz) and entered with a carrier-gas into a commercial ICP-OES system (Plasma 2000, Perkin-Elmer) with two monochromators. The influence of the laser parameters (pulse frequency and power) on the ablation rate and the particle size of the ablated material were investigated, and they were found to range from 1.0 to 16.7 μg/s and below 100 nm, respectively. In the case of brass samples, selective evaporation of the matrix elements Cu and Zn was found to occur. Laser parameters such as frequency, power, and ablation time were found not to influence the selective evaporation of Cu and Zn significantly. The detection limits for Ni, Cr, Mo, Mn, and Si in low-alloyed steel; Fe, Ni, Sn, and Pb in brass; and Fe, Cu, and Si in aluminum were found to be at the 20-100 μg/g level, independent of the sample matrix. The long-term stability of the emission signal was found to be better than 5% for ablation times of up to 10 min, and relative standard deviations usually are between 1 and 5%. For Mo, Mn, Si, Ni, and Cr in the BAS SS 435 sample, good agreement of the analytical results at the 0.01-0.5% level with certified values could be obtained when calibrating with other BAS standard reference samples.

PDF Article
More Like This
Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

Michaela Galiová, Jozef Kaiser, Francisco J. Fortes, Karel Novotný, Radomír Malina, Lubomír Prokeš, Aleš Hrdlička, Tomáš Vaculovič, Miriam Nývltová Fišáková, Jiří Svoboda, Viktor Kanický, and Javier J. Laserna
Appl. Opt. 49(13) C191-C199 (2010)

Emission enhancement of laser-induced breakdown spectroscopy for aqueous sample analysis based on Au nanoparticles and solid-phase substrate

Xu Wen, Qingyu Lin, Guanghui Niu, Qi Shi, and Yixiang Duan
Appl. Opt. 55(24) 6706-6712 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.