Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 55,
  • Issue 4,
  • pp. 496-503
  • (2001)

Room-Temperature Phosphorescence of 1-Bromonaphthalene upon Formation of Beta-Cyclodextrin Ternary Complexes with Alcohols and Surfactants: Optimization of Analytical Figures of Merit by Rigorous Equilibrium Studies

Not Accessible

Your library or personal account may give you access

Abstract

Room-temperature phosphorimetry of ternary β-cyclodextrin complexes of the model compound 1-bromonaphthalene has been examined. The selected third partners were alcohols (cyclohexanol, cyclopentanol, and 1-pentanol) and surfactants (Triton X-100 and sodium dodecyl sulfate). A thorough analysis of all equilibria involved in the interaction between the components is performed and discussed. A computational procedure, not previously employed to study this type of complex systems, is used for the determination of the equilibrium constants and stoichiometries of the formed species. It is shown that a rigorous analysis of the equilibria is necessary for a proper optimization of analytical methods based on room-temperature phosphorescence of ternary complexes. The best working conditions are inferred from the examination of three-dimensional and contour plots of the ternary complex concentration as a function of those of the reagents. The latter plots are constructed once the relative stabilities of all intervening species are known. On the basis of the calibration results, the relative advantages of employing the examined systems for determining the studied compound are presented.

PDF Article
More Like This
Room temperature phosphorescence from Si-doped-CD-based composite materials with long lifetimes and high stability

Guangqi Hu, Yixuan Xie, Xiaokai Xu, Bingfu Lei, Jianle Zhuang, Xuejie Zhang, Haoran Zhang, Chaofan Hu, Wenshi Ma, and Yingliang Liu
Opt. Express 28(13) 19550-19561 (2020)

Lifetime-tunable green room temperature phosphorescence of carbon dots by the multi-step modification

Jinshu Huang, Jinyang Zhu, Gang Yang, Yongsheng Zhu, Xiumei Xu, and Gencai Pan
Opt. Express 29(25) 41014-41022 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.