Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 59,
  • Issue 10,
  • pp. 1229-1235
  • (2005)

MADSTRESS: A Linear Approach for Evaluating Scattering and Absorption Coefficients of Samples Measured Using Time-Resolved Spectroscopy in Reflection

Not Accessible

Your library or personal account may give you access

Abstract

Time-resolved spectroscopy is a powerful technique permitting the separation of the scattering properties from the chemical absorption properties of a sample. The reduced scattering coefficient and the absorption coefficient are usually obtained by fitting diffusion or Monte Carlo models to the measured data using numerical optimization techniques. However, these methods do not take the spectral dimension of the data into account during the evaluation procedure, but evaluate each wavelength separately. A procedure involving multivariate methods may seem more appealing for people used to handling conventional near-infrared data. In this study we present a new method for processing TRS spectra in order to compute the absorption and reduced scattering coefficients. This approach, MADSTRESS, is based on linear regression and a two-dimensional (2D) interpolation procedure. The method has allowed us to calculate absorption and scattering coefficients of apples and fructose powder. The accuracy of the method was good enough to provide the identification of fructose absorption peaks in apple absorption spectra and the construction of a calibration model predicting the sugar content of apples.

PDF Article
More Like This
Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements

Steen J. Madsen, Brian C. Wilson, Michael S. Patterson, Young D. Park, Steven L. Jacques, and Yaron Hefetz
Appl. Opt. 31(18) 3509-3517 (1992)

Least-squares support vector machines modelization for time-resolved spectroscopy

Fabien Chauchard, Sylvie Roussel, Jean-Michel Roger, Véronique Bellon-Maurel, Christoffer Abrahamsson, Tomas Svensson, Stefan Andersson-Engels, and Sune Svanberg
Appl. Opt. 44(33) 7091-7097 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved