Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 62,
  • Issue 6,
  • pp. 655-660
  • (2008)

Fourier Transform Infrared Measurement of Solid-, Liquid-, and Gas-Phase Samples with a Single Photoacoustic Cell

Not Accessible

Your library or personal account may give you access


A photoacoustic detector based on the optical cantilever microphone has been built. The detector is capable of measuring solid-, liquid-, and gas-phase samples. Photoacoustic Fourier transform infrared (FT-IR) measurement with three samples in different phases was demonstrated. Example samples were polyethene, sunflower oil, and methane. The sensitivity of the cell was compared to a commercial photoacoustic FT-IR detector. With the standard carbon black sample the cantilever detector gave approximately five times higher signal-to-noise ratio than the reference detector. The sensitivity with methane was also compared to the DTGS detector of the FT-IR instrument corresponding to an absorption path of 6.3 cm. Simulation of the photoacoustic signal showed that a compromise has to be made in the cell design between sensitivity for solid- and gas-phase samples but it is possible to highly enhance the sensitivity for all types of samples by reducing cantilever dimensions.

PDF Article
More Like This
Photoacoustic phase-controlled Fourier-transform infrared spectroscopy

Santeri Larnimaa, Mikhail Roiz, and Markku Vainio
Opt. Continuum 2(3) 564-578 (2023)

Relaxation time measurements in frequency and time-domain photoacoustic spectroscopy of condensed phases

A. Mandelis and B. S. H. Royce
J. Opt. Soc. Am. 70(5) 474-480 (1980)

High temperature Fourier transform photoacoustic spectroscopy: sample emission effects

S. McGovern, B. S. H. Royce, and J. Benziger
Appl. Opt. 24(10) 1512-1514 (1985)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access Optica Member Subscription

Select as filters

Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved