Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 62,
  • Issue 9,
  • pp. 941-947
  • (2008)

A New Method for the Time-Resolved Analysis of Structure and Orientation: Polarization Modulation Infrared Structural Absorbance Spectroscopy

Not Accessible

Your library or personal account may give you access


Polarization modulation infrared linear dichroism (PM-IRLD) is often used for measurements of molecular orientation with high sensitivity and good time resolution. However, PM-IRLD is unable to provide the structural absorbance spectrum because it does not measure separately the parallel and perpendicular spectra. Here we propose a new method, named polarization modulation infrared structural absorbance spectroscopy (PM-IRSAS), to overcome this limitation of PM-IRLD. PM-IRSAS measures the dichroic difference and structural absorbance spectra simultaneously and, therefore, allows quantitative analysis of molecular orientation and conformation with 200 ms time resolution. The PM-IRSAS method was first validated through comparison with conventional polarized FT-IR spectroscopy using drawn polymer films. Second, it was demonstrated that the PM-IRSAS method can provide a quantitative analysis of dynamic orientation and conformation changes in PET films during deformation and crystallization processes.

PDF Article
More Like This
Fluorescence polarization standard for near infrared spectroscopy and microscopy

Rafal Luchowski, Pabak Sarkar, Shashank Bharill, Gabor Laczko, Julian Borejdo, Zygmunt Gryczynski, and Ignacy Gryczynski
Appl. Opt. 47(33) 6257-6265 (2008)

Recent applications of FT-IR spectroscopy to polymer systems

J. L. Koenig and M. K. Antoon
Appl. Opt. 17(9) 1374-1385 (1978)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access Optica Member Subscription

Select as filters

Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved