Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 64,
  • Issue 10,
  • pp. 1100-1108
  • (2010)

A Study of Glutathione Molecules Adsorbed on Silver Surfaces Under Different Chemical Environments by Surface-Enhanced Raman Scattering in Combination with the Heat-Induced Sensing Method

Not Accessible

Your library or personal account may give you access

Abstract

In this study, surface-enhanced Raman scattering (SERS) in combination with a heat-induced sensing technique has been applied for investigating molecular orientations of glutathione molecules adsorbed on silver colloidal nanoparticles under different chemical environments, which has enabled us to further study how glutathione molecules are adsorbed on the silver surfaces. Factors that may affect the configurations of glutathione molecules adsorbed on the silver nanocolloids have been investigated. By observing the relative enhancement factors of SERS bands due to individual functional groups contributed from different terminals, the affinity between the different functional groups of glutathione and the silver surfaces under different conditions has been sorted and the orientations of glutathione molecules adsorbed on the silver surfaces have been investigated.

PDF Article
More Like This
High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering

Xuan Yang, Chao Shi, Damon Wheeler, Rebecca Newhouse, Bin Chen, Jin Z. Zhang, and Claire Gu
J. Opt. Soc. Am. A 27(5) 977-984 (2010)

Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles

M. Kerker, D.-S. Wang, and H. Chew
Appl. Opt. 19(19) 3373-3388 (1980)

Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata

Milton Kerker, Dau-Sing Wang, and H. Chew
Appl. Opt. 19(24) 4159-4174 (1980)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.