Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 65,
  • Issue 6,
  • pp. 648-656
  • (2011)

Determination of Volume Fractions in Multicomponent Mixtures Using Ultrasound Frequency Analysis

Not Accessible

Your library or personal account may give you access

Abstract

Controlling the composition of mixtures is critical for quality control in a wide variety of applications. There is a need for rapid, on-site measurements to optimize processes in real time. Ultrasound easily penetrates opaque samples and containers, yet currently provides minimal chemical information. We have developed a general approach to determine the volume fraction of a liquid in mixtures with multiple components. Ultrasound waves propagating through a medium undergo distortion processes that are characteristic of the chemical bonding composition. The distortion of the waveform can be measured in the ultrasound frequency profile. An ultrasound pulse-through configuration with matching 5 MHz transducers was used to analyze mixtures of water, methanol, and ethanol. Multilinear regression analysis was used to determine the volume fraction of all components in a series of mixtures. Using this technique, volume fractions were determined simultaneously with correlation coefficients (<i>r</i><sup>2</sup>) greater than 0.98 in two-component mixtures. Determination of volume fractions in three-component mixtures ranging from 65–100% water also showed correlation coefficients of 0.91 for methanol and 0.94 for ethanol. This technique is attractive for process monitoring due to the short measurement time and the simple methodology that excludes sample pretreatment.

PDF Article
More Like This
Determination of 1-propanol, ethanol, and methanol concentrations in water based on a one-dimensional phoxonic crystal sensor

Samar M. Shaban, Ahmed Mehaney, and Arafa H. Aly
Appl. Opt. 59(13) 3878-3885 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.