Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 65,
  • Issue 7,
  • pp. 790-796
  • (2011)

Development of an Apparatus for On-Line Analysis of Unburned Carbon in Fly Ash Using Laser-Induced Breakdown Spectroscopy (LIBS)

Not Accessible

Your library or personal account may give you access

Abstract

The level of unburned carbon in fly ash is an important criteria for evaluating the combustion efficiencies of boilers, as well as the commercial value of the produced fly ash. In this work, an automated prototype laser-induced breakdown spectroscopy (LIBS) apparatus comprising an isokinetic sampler, a sample preparation module, and a LIBS module has been developed for possible application to power plants for on-line analysis of unburned carbon in fly ash without being affected by the type of coal burned. Emphasis is placed on the structure and operation of the LIBS apparatus, the optimum suction capacity selection, the analytical methods for estimation of the exact C line intensity, and the proper calibration model established for minimizing the matrix effects, which enable the minimization of matrix effects and obtaining more accurate compositional measurements. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The measurement accuracy presented here for unburned carbon analysis is estimated to be 0.26%, while the average relative error is 3.81%.

PDF Article
More Like This
Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy

Miki Kurihara, Koji Ikeda, Yoshinori Izawa, Yoshihiro Deguchi, and Hitoshi Tarui
Appl. Opt. 42(30) 6159-6165 (2003)

Quantitative carbon measurement in anthracite using laser-induced breakdown spectroscopy with binder

Tingbi Yuan, Zhe Wang, Lizhi Li, Zongyu Hou, Zheng Li, and Weidou Ni
Appl. Opt. 51(7) B22-B29 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.