Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 66,
  • Issue 6,
  • pp. 656-664
  • (2012)

Rapid Measurement of Methyl Cellulose Precipitable Tannins Using Ultraviolet Spectroscopy with Chemometrics: Application to Red Wine and Inter-Laboratory Calibration Transfer

Not Accessible

Your library or personal account may give you access

Abstract

Information relating to tannin concentration in grapes and wine is not currently available simply and rapidly enough to inform decision-making by grape growers, winemakers, and wine researchers. Spectroscopy and chemometrics have been implemented for the analysis of critical grape and wine parameters and offer a possible solution for rapid tannin analysis. We report here the development and validation of an ultraviolet (UV) spectral calibration for the prediction of tannin concentration in red wines. Such spectral calibrations reduce the time and resource requirements involved in measuring tannins. A diverse calibration set (n = 204) was prepared with samples of Australian wines of five varieties (Cabernet Sauvignon, Shiraz, Merlot, Pinot Noir, and Durif), from regions spanning the wine grape growing areas of Australia, with varying climate and soils, and with vintages ranging from 1991 to 2007. The relationship between tannin measured by the methyl cellulose precipitation (MCP) reference method at 280 nm and tannin predicted with a multiple linear regression (MLR) calibration, using ultraviolet (UV) absorbance at 250, 270, 280, 290, and 315 nm, was strong (r2val = 0.92; SECV = 0.20 g/L). An independent validation set (n = 85) was predicted using the MLR algorithm developed with the calibration set and gave confidence in the ability to predict new samples, independent of the samples used to prepare the calibration (r2val = 0.94; SEP = 0.18 g/L). The MLR algorithm could also predict tannin in fermenting wines (r2val = 0.76; SEP = 0.18 g/L), but worked best from the second day of ferment on. This study also explored instrument-to-instrument transfer of a spectral calibration for MCP tannin. After slope and bias adjustments of the calibration, efficient calibration transfer to other laboratories was clearly demonstrated, with all instruments in the study effectively giving identical results on a transfer set.

PDF Article
More Like This
Rapid detection of cellulose and hemicellulose contents of corn stover based on near-infrared spectroscopy combined with chemometrics

Na Wang, Longwei Li, Jinming Liu, Jianfei Shi, Yang Lu, Bo Zhang, Yong Sun, and Wenzhe Li
Appl. Opt. 60(15) 4282-4290 (2021)

Spectral data mining for rapid measurement of organic matter in unsieved moist compost

Somsubhra Chakraborty, David C. Weindorf, Md. Nasim Ali, Bin Li, Yufeng Ge, and Jeremy L. Darilek
Appl. Opt. 52(4) B82-B92 (2013)

Potential use of surface-assisted LIBS for determination of strontium in wines

J. Bocková, A. Marín Roldán, J. Yu, and P. Veis
Appl. Opt. 57(28) 8272-8278 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved