Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 66,
  • Issue 8,
  • pp. 944-950
  • (2012)

Time-Resolved Diffuse Optical Spectroscopy up to 1700 nm by Means of a Time-Gated InGaAs/InP Single-Photon Avalanche Diode

Not Accessible

Your library or personal account may give you access

Abstract

We present a new compact system for time-domain diffuse optical spectroscopy of highly scattering media operating in the wavelength range from 1100 nm to 1700 nm. So far, this technique has been exploited mostly up to 1100 nm: we extended the spectral range by means of a pulsed supercontinuum light source at a high repetition rate, a prism to spectrally disperse the radiation, and a time-gated InGaAs/InP single-photon avalanche diode working up to 1700 nm. A time-correlated single-photon counting board was used as processing electronics. The system is characterized by linear behavior up to absorption values of about 3.4 cm<sup>−1</sup> where the relative error is 17%. A first measurement performed on lipids is presented: the absorption spectrum shows three major peaks at 1200 nm, 1400 nm, and 1700 nm.

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved