Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 67,
  • Issue 10,
  • pp. 1200-1204
  • (2013)

Modeling, Characterizing, and Accommodating Static Birefringence in Circular and Linear Dichroism Spectroscopy

Not Accessible

Your library or personal account may give you access


Nearly all circular dichroism (CD) and linear dichroism (LD) spectrometers use a photoelastic modulator (PEM) in which an optical element is stressed using a high-tension voltage (HT) signal to induce birefringence. The birefringence consequently produces a phase difference between perpendicular polarization states of light passing through the PEM that is appropriate to CD or LD measurements. However, even without external stress (i.e., at zero HT) the PEM exhibits an inherent static birefringence. This article discusses the characterization of the static birefringence inherent to a PEM and its effect on the measurement of CD and LD, as well as the development and implementation of a novel model that accommodates for the presence of static birefringence. The model is validated with CD and LD experiments using purely chiral or linearly structured molecules (camphorsulfonic acid and chrysazin).

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access Optica Member Subscription

Select as filters

Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved