Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 69,
  • Issue 11,
  • pp. 1243-1250
  • (2015)

Attenuated Total Reflection Mid-Infrared (ATR-MIR) Spectroscopy and Chemometrics for the Identification and Classification of Commercial Tannins

Not Accessible

Your library or personal account may give you access


Attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy was used to characterize 40 commercial tannins, including condensed and hydrolyzable chemical classes, provided as powder extracts from suppliers. Spectral data were processed to detect typical molecular vibrations of tannins bearing different chemical groups and of varying botanical origin (univariate qualitative analysis). The mid-infrared region between 4000 and 520 cm−1 was analyzed, with a particular emphasis on the vibrational modes in the fingerprint region (1800-520 cm−1), which provide detailed information about skeletal structures and specific substituents. The region 1800-1500 cm−1 contained signals due to hydrolyzable structures, while bands due to condensed tannins appeared at 1300-900 cm−1 and exhibited specific hydroxylation patterns useful to elucidate the structure of the flavonoid monomeric units. The spectra were investigated further using principal component analysis for discriminative purposes, to enhance the ability of infrared spectroscopy in the classification and quality control of commercial dried extracts and to enhance their industrial exploitation.

PDF Article
More Like This
Attenuated total reflectance spectroscopy with chirped-pulse upconversion

Hideto Shirai, Constance Duchesne, Yuji Furutani, and Takao Fuji
Opt. Express 22(24) 29611-29616 (2014)

Preparation and transmission characteristics of a mid-infrared attenuated total reflection hollow waveguide based on a stainless steel capillary tube

Xu Wang, Hong Guo, Lin Wang, Fangyu Yue, Chengbin Jing, and Junhao Chu
Appl. Opt. 55(23) 6404-6409 (2016)

Use of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the development of lipid aggregate structures

Mateo R. Hernandez, Elyse N. Towns, Terry C. Ng, Brian C. Walsh, Richard Osibanjo, Atul N. Parikh, and Donald P. Land
Appl. Opt. 51(15) 2842-2846 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access Optica Member Subscription

Select as filters

Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.