Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 69,
  • Issue 11,
  • pp. 1313-1318
  • (2015)

Accuracy of Noninvasive Glucose Sensing Based on Near-Infrared Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

The noninvasive sensing of the blood glucose concentration is usually based on optical, electrical, or acoustical signals induced by blood glucose; these signals are extremely weak and subject to fluctuations caused by the variation in the body or surroundings. Therefore, it is challenging to detect blood glucose noninvasively with high accuracy, and no successful accurate and noninvasive clinical application has been reported. We found that there are two key measurement issues to be addressed: systematic errors, such as the errors induced by the drifts of devices or by variations in body temperature, among others, are too large to guarantee the trueness of measurement at present; and random disturbances in repeated tests, such as disturbances associated with variations in the human-machine interface, pulses, and the thermal noise of the devices, cause larger repeated measurement errors and compromise precision. Recent novel reference measurements based on differential near-infrared (NIR) spectroscopy are considered promising for solving the systematic error issue by establishing matched references, collected at another detection site or at another time, and subsequently differencing to remove the common systematic errors. However, differencing weakens the signal of interest itself and enlarges the effects of the second issue, random disturbances affecting the precision. It is understood that only reference measurements that can meet the precision requirement will be promising for future applications. Therefore, this study quantitatively evaluates the precision of the main differential NIR spectroscopy measurements considering similar conditions and minimized random disturbances. The precision of the measurements under these conditions should represent their optimal precision levels. After the evaluation, noninvasive glucose-sensing methods that hold promise for future clinical application are proposed. Finally, the evaluation criteria could be a reference for the noninvasive detection of other physiological components.

PDF Article
More Like This
High-accuracy noninvasive continuous glucose monitoring using OCT angiography-purified blood scattering signals in human skin

Mengqin Gao, Dayou Guo, Jiahao Wang, Yizhou Tan, Kaiyuan Liu, Lei Gao, Yulei Zhang, Zhihua Ding, Ying Gu, and Peng Li
Biomed. Opt. Express 15(2) 991-1003 (2024)

Noninvasive glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers

Ryosuke Kasahara, Saiko Kino, Shunsuke Soyama, and Yuji Matsuura
Biomed. Opt. Express 9(1) 289-302 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved