Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 70,
  • Issue 3,
  • pp. 531-538
  • (2016)

Application of In-Line Mid-Infrared (MIR) Spectroscopy Coupled with Calorimetry for the Determination of the Molar Enthalpy of Reaction between Ammonium Chloride and Sodium Nitrite

Not Accessible

Your library or personal account may give you access

Abstract

The reaction between ammonium chloride and sodium nitrite has been known for its application as a source of heat because of its large enthalpy of reaction, for which it has been used by the oil industry. There have been no known calorimetric studies for the experimental determination of its molar enthalpy of reaction, which is necessary in order to predict the limits achieved for up-scale applications. Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) and reaction calorimetry were used to determine this value by using a simple methodology. Both techniques were used concomitantly as a source of information regarding the time-dependent moles converted (Δn) and the amount of exchanged heat (ΔH). The molar enthalpy of reaction was calculated to be −74 ± 4 kcal mol−1. The percentage between the confidence interval and the calculated value was 5.4%, which shows that the methodology was precise. After the determination of the molar enthalpy of reaction, it was proved that the ATR FT-IR alone was able to be used as a substitute for the reaction calorimetry technique, in which the IR signal is converted to the heat information, presenting as an easier technique for the monitoring of the heat released by this system for future applications.

© 2016 The Author(s)

PDF Article
More Like This
Infrared spectroscopy of secondary organic aerosol precursors and investigation of the hygroscopicity of SOA formed from the OH reaction with guaiacol and syringol

Waed Ahmad, Cecile Coeur, Alexandre Tomas, Thomas Fagniez, Jean-Blaise Brubach, and Arnaud Cuisset
Appl. Opt. 56(11) E116-E122 (2017)

Spectral-absorptance measurements for laser calorimetry*

E. D. West and L. B. Schmidt
J. Opt. Soc. Am. 65(5) 573-578 (1975)

Infrared band intensities in ammonium hydroxide and ammonium salts*

P. P. Sethna, H. D. Downing, Lary W. Pinkley, and Dudley Williams
J. Opt. Soc. Am. 68(4) 429-431 (1978)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.