Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 70,
  • Issue 7,
  • pp. 1118-1127
  • (2016)

Linear and Nonlinear Calibration Methods for Predicting Mechanical Properties of Polypropylene Pellets Using Raman Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

A nondestructive and faster methodology to quantify mechanical properties of polypropylene (PP) pellets, obtained from an industrial plant, was developed with Raman spectroscopy. Raman spectra data were obtained from several types of samples such as homopolymer PP, random ethylene–propylene copolymer, and impact ethylene–propylene copolymer. Multivariate calibration models were developed by relating the changes in the Raman spectra to mechanical properties determined by ASTM tests (Young’s traction modulus, tensile strength at yield, elongation at yield on traction, and flexural modulus at 1% secant). Several strategies were evaluated to build robust models including the use of preprocessing methods (baseline correction, vector normalization, de-trending, and standard normal variate), selecting the best subset of wavelengths to model property response and discarding irrelevant variables by applying genetic algorithm (GA). Linear multivariable models were investigated such as partial least square regression (PLS) and PLS with genetic algorithm (GA-PLS) while nonlinear models were implemented with artificial neural network (ANN) preceded by GA (GA-ANN). The best multivariate calibration models were obtained when a combination of genetic algorithms and artificial neural network were used on Raman spectral data with relative standard errors (%RSE) from 0.17 to 0.41 for training and 0.42 to 0.88% validation data sets.

© 2016 The Author(s)

PDF Article
More Like This
Quantitative analysis of steel samples using laser-induced breakdown spectroscopy with an artificial neural network incorporating a genetic algorithm

Kuohu Li, Lianbo Guo, Jiaming Li, Xinyan Yang, Rongxing Yi, Xiangyou Li, Yongfeng Lu, and Xiaoyan Zeng
Appl. Opt. 56(4) 935-941 (2017)

Discrimination of hazardous bacteria with combination laser-induced breakdown spectroscopy and statistical methods

Yu Zhao, Qianqian Wang, Xutai Cui, Geer Teng, Kai Wei, and Haida Liu
Appl. Opt. 59(5) 1329-1337 (2020)

Noninvasive liver diseases detection based on serum surface enhanced Raman spectroscopy and statistical analysis

Xiaozhou Li, Tianyue Yang, Siqi Li, Lili Jin, Deli Wang, Dagang Guan, and Jianhua Ding
Opt. Express 23(14) 18361-18372 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.