Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 70,
  • Issue 7,
  • pp. 1186-1194
  • (2016)

Determination of Water Vapor Pressure Over Corrosive Chemicals Versus Temperature Using Raman Spectroscopy as Exemplified with 85.5% Phosphoric Acid

Not Accessible

Your library or personal account may give you access

Abstract

A method to determine the water vapor pressure over a corrosive substance was developed and tested with 85.5 ± 0.4% phosphoric acid. The water vapor pressure was obtained at a range of temperatures from ∼25 ℃ to ∼200 ℃ using Raman spectrometry. The acid was placed in an ampoule and sealed with a reference gas (either hydrogen or methane) at a known pressure (typically ∼0.5 bar). By comparing the Raman signals from the water vapor and the references, the water pressure was determined as a function of temperature. A considerable amount of data on the vapor pressure of phosphoric acid are available in the literature, to which our results could successfully be compared. A record value of the vapor pressure, 3.40 bar, was determined at 210 ℃. The method required a determination of the precise Raman scattering ratios between the substance, water, and the used reference gas, hydrogen or methane. In our case the scattering ratios between water and reference ν1 Q-branches were found to be 1.20 ± 0.03 and 0.40 ± 0.02 for H2 and CH4, respectively.

© 2016 The Author(s)

PDF Article
More Like This
Temperature determination of superheated water vapor by rotational-vibrational Raman spectroscopy

Leo A. Bahr, Peter Fendt, Yin Pang, Jürgen Karl, Thomas Hammer, Andreas S. Braeuer, and Stefan Will
Opt. Lett. 43(18) 4477-4480 (2018)

Liquid phase temperature determination in dense water sprays using linear Raman scattering

Robert Fabian Hankel, Astrid Günther, Karl-Ernst Wirth, Alfred Leipertz, and Andreas Braeuer
Opt. Express 22(7) 7962-7971 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.