Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 70,
  • Issue 9,
  • pp. 1464-1475
  • (2016)

Using Separable Nonnegative Matrix Factorization Techniques for the Analysis of Time-Resolved Raman Spectra

Not Accessible

Your library or personal account may give you access

Abstract

The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for nonnegative matrix factorization that is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with the vibrational bands of other species. The approach is applied to synthetic “experimental” spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed.

© 2016 The Author(s)

PDF Article
More Like This
Image multiplexing and encryption using the nonnegative matrix factorization method adopting digital holography

Hsuan T. Chang, J.-W. Shui, and K.-P. Lin
Appl. Opt. 56(4) 958-966 (2017)

Defect detection of capacitive touch panel using a nonnegative matrix factorization and tolerance model

Changcheng Jiang, Yanming Quan, and Xingui Lin
Appl. Opt. 55(9) 2331-2338 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.