Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 71,
  • Issue 1,
  • pp. 152-155
  • (2017)

Avoiding Ethanol Presence in DNA Samples Enhances the Performance of Ultraviolet Resonance Raman Spectroscopy Analysis

Not Accessible

Your library or personal account may give you access

Abstract

Ethanol is an essential chemical reagent in DNA preparation as its use increases the yield of extraction. All methodologies for DNA isolation involve the use of ethanol in order to prevent DNA dissolution in water and to optimize the binding of DNA to chromatographic membranes. In this note, we show how the presence of ethanol traces in DNA aqueous solution affects ultraviolet Raman spectra, leading to possible misinterpretations. We report a simple method to remove the ethanol Raman features from the spectra, based on heating the DNA sample at 80 ℃, followed by a slow cooling procedure.

© 2016 The Author(s)

PDF Article
More Like This
Quantitative analysis of double-stranded DNA amplified by a polymerase chain reaction employing surface-enhanced Raman spectroscopy

X. Dou, T. Takama, Y. Yamaguchi, K. Hirai, H. Yamamoto, S. Doi, and Y. Ozaki
Appl. Opt. 37(4) 759-763 (1998)

Dynamic surface-enhanced Raman spectroscopy of DNA oligomer with a single hotspot from a gold nanoparticle dimer

Koji Sugano, Katsunari Maruoka, Kohei Ikegami, Akio Uesugi, and Yoshitada Isono
Opt. Lett. 47(2) 373-376 (2022)

Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis

Duo Lin, Shangyuan Feng, Jianji Pan, Yanping Chen, Juqiang Lin, Guannan Chen, Shusen Xie, Haishan Zeng, and Rong Chen
Opt. Express 19(14) 13565-13577 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.