Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 71,
  • Issue 3,
  • pp. 410-421
  • (2017)

Monitoring Process Water Quality Using Near Infrared Spectroscopy and Partial Least Squares Regression with Prediction Uncertainty Estimation

Not Accessible

Your library or personal account may give you access

Abstract

Reuse of process water in dairy ingredient production—and food processing in general—opens the possibility for sustainable water regimes. Membrane filtration processes are an attractive source of process water recovery since the technology is already utilized in the dairy industry and its use is expected to grow considerably. At Arla Foods Ingredients (AFI), permeate from a reverse osmosis polisher filtration unit is sought to be reused as process water, replacing the intake of potable water. However, as for all dairy and food producers, the process water quality must be monitored continuously to ensure food safety. In the present investigation we found urea to be the main organic compound, which potentially could represent a microbiological risk. Near infrared spectroscopy (NIRS) in combination with multivariate modeling has a long-standing reputation as a real-time measurement technology in quality assurance. Urea was quantified Using NIRS and partial least squares regression (PLS) in the concentration range 50–200 ppm (RMSEP = 12 ppm, R2 = 0.88) in laboratory settings with potential for on-line application. A drawback of using NIRS together with PLS is that uncertainty estimates are seldom reported but essential to establishing real-time risk assessment. In a multivariate regression setting, sample-specific prediction errors are needed, which complicates the uncertainty estimation. We give a straightforward strategy for implementing an already developed, but seldom used, method for estimating sample-specific prediction uncertainty. We also suggest an improvement. Comparing independent reference analyses with the sample-specific prediction error estimates showed that the method worked on industrial samples when the model was appropriate and unbiased, and was simple to implement.

© 2016 The Author(s)

PDF Article
More Like This
Partial least squares regression calculation for quantitative analysis of metals submerged in water measured using laser-induced breakdown spectroscopy

Tomoko Takahashi, Blair Thornton, Takumi Sato, Toshihiko Ohki, Koichi Ohki, and Tetsuo Sakka
Appl. Opt. 57(20) 5872-5883 (2018)

Acidity measurement of iron ore powders using laser-induced breakdown spectroscopy with partial least squares regression

Z.Q. Hao, C.M. Li, M. Shen, X.Y. Yang, K.H. Li, L.B. Guo, X.Y. Li, Y.F. Lu, and X.Y. Zeng
Opt. Express 23(6) 7795-7801 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved