Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 71,
  • Issue 5,
  • pp. 888-900
  • (2017)

Tunable Diode Laser Absorption Spectroscopy Sensor for Calibration Free Humidity Measurements in Pure Methane and Low CO2 Natural Gas

Not Accessible

Your library or personal account may give you access

Abstract

We report a new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor for absolute measurements of H2O in methane, ethane, propane, and low CO2 natural gas. The sensor is operated with a 2.7 µm DFB laser, equipped with a high pressure single pass gas cell, and used to measure H2O amount of substance fractions in the range of 0.31–25 000 µmol/mol. Operating total gas pressures are up to 5000 hPa. The sensor has been characterized, addressing the traceability of the spectrometric results to the SI and the evaluation of the combined uncertainty, following the guide to the expression of uncertainty in measurement (GUM). The relative reproducibility of H2O amount of substance fraction measurements at 87 µmol/mol is 0.26% (0.23 µmol/mol). The maximum precision of the sensor was determined using a H2O in methane mixture, and found to be 40 nmol/mol for a time resolution of 100 s. This corresponds to a normalized detection limit of 330 nmol mol−1·m Hz−1/2. The relative combined uncertainty of H2O amount fraction measurements delivered by the sensor is 1.2%.

© 2016 The Author(s)

PDF Article
More Like This
Interband cascade laser-based optical transfer standard for atmospheric carbon monoxide measurements

Javis A. Nwaboh, Zhechao Qu, Olav Werhahn, and Volker Ebert
Appl. Opt. 56(11) E84-E93 (2017)

Wavelength-modulation laser hygrometer for ultrasensitive detection of water vapor in semiconductor gases

David Christian Hovde, Joseph T. Hodges, Gregory E. Scace, and Joel A. Silver
Appl. Opt. 40(6) 829-839 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved