Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 71,
  • Issue 5,
  • pp. 970-976
  • (2017)

Analysis of the Thermo-Reflectivity Coefficient Influence Using Photothermal Pump–Probe Techniques

Not Accessible

Your library or personal account may give you access

Abstract

Recent improvements in the modeling of photo-induced thermo–optical–mechanical effects have broadened the application of photothermal techniques to a large class of solids and fluids. During laser excitation, changes in optical reflectivity due to temperature variation may affect the photothermal signal. In this study, the influence of the reflectivity change due to heating is analyzed for two pump–probe photothermal techniques, thermal lens and thermal mirror. A linear equation for the temperature dependence of the reflectivity is derived, and the solution is tested using optical properties of semi-transparent and opaque materials. For semi-transparent materials, the influence of the reflectivity change in photothermal signals is less than 0.01%, while for opaque materials it is lower than 3%.

© 2016 The Author(s)

PDF Article
More Like This
Photothermal analysis of polymeric dye laser materials excited at different pump rates

Ricardo Duchowicz, Lucía B. Scaffardi, Angel Costela, Inmaculada García-Moreno, Roberto Sastre, and Alberto Ulises Acuña
Appl. Opt. 42(6) 1029-1035 (2003)

Pulsed photothermal mirror technique: characterization of opaque materials

O. A. Capeloto, G. V. B. Lukasievicz, V. S. Zanuto, L. S. Herculano, N. E. Souza Filho, A. Novatski, L. C. Malacarne, S. E. Bialkowski, M. L. Baesso, and N. G. C. Astrath
Appl. Opt. 53(33) 7985-7991 (2014)

Frequency-modulated impulse response photothermal detection through optical reflectance. 1: Theory

Andreas Mandelis and Joan F. Power
Appl. Opt. 27(16) 3397-3407 (1988)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.