Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 71,
  • Issue 6,
  • pp. 1127-1133
  • (2017)

Irreversible Damage of Polymer Membranes During Attenuated Total Reflection Infrared Analysis

Not Accessible

Your library or personal account may give you access

Abstract

Analyzing polymer membranes by attenuated total reflection infrared spectroscopy (ATR-IR) can lead to irreversible damage to the material and induces systematic errors in the data. Attenuated total reflection infrared spectroscopy is a common tool for analyzing the surface of polymer membranes. In order to provide sufficient contact between the membrane and the internal reflection element (i.e., the ATR crystal), pressure is applied via a metal stamp. This procedure, however, can lead to mechanical damage. In this work, we study this damage using the example of a polyethersulfone (PES) membrane for water filtration and we show how the damage can be avoided. Attenuated total reflection infrared spectroscopy, laser-scanning microscopy (LSM), and atomic force microscopy (AFM) are employed to understand the mechanically-induced phenomena at the molecular and macroscopic scales. The data reveal that the mechanical impact does not only result in a compressed membrane structure with smaller pores, but it also leads to deformations at the molecular level. Moreover, in light of the mechanical damage, a detailed analysis of the PES IR spectrum indicates that several previous vibrational assignments of peaks may be incorrect and that many published results may be biased and should be revisited.

© 2017 The Author(s)

PDF Article
More Like This
Dispersion effects on infrared spectra in attenuated total reflection

Rabah Belali, Jean-Marie Vigoureux, and Joseph Morvan
J. Opt. Soc. Am. B 12(12) 2377-2381 (1995)

Use of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the development of lipid aggregate structures

Mateo R. Hernandez, Elyse N. Towns, Terry C. Ng, Brian C. Walsh, Richard Osibanjo, Atul N. Parikh, and Donald P. Land
Appl. Opt. 51(15) 2842-2846 (2012)

Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total reflection

Yuji Matsuura, Saiko Kino, and Takashi Katagiri
Appl. Opt. 48(28) 5396-5400 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.