Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 71,
  • Issue 8,
  • pp. 1884-1893
  • (2017)

Hydrodemetallation and Hydrodesulfurization Spent Catalysts Elemental Analysis: Comparison of Wavelength Dispersive X-ray Fluorescence and Atomic Emission Spectrometries

Not Accessible

Your library or personal account may give you access

Abstract

Petroleum industries continuously consume catalysts on very large scales. The recycling of spent catalysts is thus of major economic and environmental importance and its first step consists of the characterization of the valuable metal content. Wavelength dispersive X-ray fluorescence (WDXRF) analysis is compared with inductively coupled plasma atomic emission spectrometry (ICP-AES) for the analysis of five samples of spent hydrodesulphurization (HDS) and hydrodemetallization (HDM) catalysts. The elements are considered for their economic interest (Co, Ni, Mo, and V) or for the problems that can arise when they are present in the sample in significant quantities (Al, As, P, Fe). First, the systematic comparison of the analysis of known synthetic samples was performed. The originality here is that the samples were first beaded with lithium tetraborate (Li2B4O7) for WDXRF analysis and then dissolved in hot HCl 6M for ICP-AES measurements. With this processing, we were able to clearly identify the origin of analytical problems when they arose. Second, the semi-quantitative protocol of WDXRF is compared with the quantitative procedure. Finally, the analysis of the spent catalysts is presented and the information gained by the systematic comparison of ICP-AES and WDXRF is shared. The interest of the simultaneous determination by the two techniques when such complicated heterogeneous matrices are involved is clearly demonstrated.

© 2017 The Author(s)

PDF Article
More Like This
Application of laser-induced breakdown spectroscopy to assess palladium catalyst deactivation

Sahar Belyani, Mohammad Hossein Keshavarz, Seyyed Mohammad Reza Darbani, and Masoud Kavosh Tehrani
Appl. Opt. 58(4) 794-799 (2019)

Rapid trace element analysis of microgram soft materials with cryogenic milling and laser ablation spectroscopy

Yuanchao Liu, Yi-Kong Hsieh, Conrad Wong, Irfan Ahmed, Rafay Ahmed, Muhammad Shehzad Khan, Richard Y. H. Cheung, Chu-Fang Wang, and Condon Lau
Appl. Opt. 59(26) 7752-7759 (2020)

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental file.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved